
HTL - BULME GRAZ, Cortex MO+, Microboard

Dezember 10

2017

Das Microcontrollerboard M0+ Microboard ist an der BULME Graz, Abteilung Elektronik und Technische Informatik, für den Unterricht im fachtheoretischen und fachpraktischen Bereich entwickelt worden. Die Bauform DIL40 ermöglicht einen universellen Einsatz an diversen Steckboards oder Prototypen.

Inhaltsangabe

1	Da	as Boa	rd	4
	1.1	Allge	meines	4
	1.2	Ansc	hlussbelegung	5
	1.3	Scha	ltplan	6
	1.	3.1	Microcontroller	6
	1.	3.2	Taktversorgung	8
	1.	3.3	USB Anschluss	8
	1.	3.4	USB/UART	9
	1.	3.5	RESET / BOOT	0
	1.	3.6	Längsregler 3,3 V1	1
	1.	3.7	LIPO Lademanagement	1
	1.	3.8	Externe Kontakte	2
	1.4	Besti	ückungsplan 1	3
	1.5	Layo	ut 1	4
	1.6	Stück	kliste1	5
2	Pr	ogram	mbeispiele1	6
	2.1	Digit	al-Out - Blinky1	6
	2.2	4 Bit	Lauflicht1	8
	2.3	4 Bit	Zähler 1	9
	2.4	4 Bit	Zähler mit beliebiger Zählfolge	0
	2.5	1 Hz	- Ticker 2	2
	2.6	UART	Γ – "Hello world" 2	3
	2.	6.1	Allgemeines 2	3
	2.	6.2	Programm	4
	2.	6.3	Ausgabe 2	4
	2.7	Einfa	cher Taschenrechner2	5
	2.	7.1	Programm2	5
	2.	7.2	Visualisierung	6

2.8 Zeic	henumkehr	27
2.8.1	Programm	27
2.8.2	Anzeige	28
2.8.3	Spezielle Zeichendarstellung	29
2.8.4	Anzeige	30
2.9 Elek	tronischer Würfel	31
2.9.1	Allgemeines	31
2.9.2	Schaltung	31
2.9.3	Programm	33
2.9.4	Ausgabe	34
2.10 PW	VM	35
2.10.1	Allgemeines	35
2.10.2	Beispiel	35
2.10.3	Anzeige	36
2.11 2 1	Kanal-PWM	37
2.12 An	alog-Digital-Umsetzer	38
2.12.1	Allgemeines	38
2.12.2	Portdefinition	39
2.12.3	Einlesen einer Analogspannung	39
2.13 Sp	annungsmessung an einem Potentiometer	40
2.13.1	Allgemeines	40
2.13.2	Programm	40
2.13.3	Ausgabe	41
2.14 Te	mperaturmessung	42
2.14.1	Messung mit Analogsensor LM235	42
2.14.2	Messung mit NTC-Sensor	45
2.14.3	Beispiel NTC	49
2.14.4	Vergleich NTC vs LM235	51
2.15 RT	·C	53
2.15.1	Allgemeines	53
2.15.2	Datum und Uhrzeit	53
2.15.3	Ausgabe	54

2.	15.4	Datum und Uhrzeit stellen	55
2.	15.5	Individuelle Zeit und Datum Ein-Ausgabe	57
2.16	Tin	ner	59
2.	16.1	Allgemeines	59
2.	16.2	Messung der Dauer einer UART Ausgabe	60
2.	16.3	Messung einer PWM Spannung	62
		ldungsverzeichnis	
3.2	Tabe	ellenverzeichnis	67
3.3	Liter	aturverzeichnis	68
3.3	3.1	Internetquellen	68
3.3	3.2	Bücher	68

1 Das Board

1.1 Allgemeines

Das Steuermodul ist an der BULME GRAZ, Abteilung Elektronik und Technische Informatik entwickelt worden. Die Hauptanwendung ist der Einsatz im fachtheoretischen und fachpraktischen Unterricht an der HTL. Die Abmessungen sind auf das genormte Maß eines DIL-40 Gehäuses gelegt worden, damit ist ein universeller Einsatz in der Hardwareentwicklung gegeben.

Als Anschlüsse werden neben den Versorgungsleitungen und USB auch die freien Portleitungen des Microcontrollers verwendet. Die USB-Schnittstelle wird sowohl für die Programmierung als auch für die UART-Schnittstelle verwendet. Für einen Betrieb mit LIPO-ACCU ist bereits ein Lademanagement integriert.



Abbildung 1: Oberseite des Microboards © Foto Schönauer (SHO)

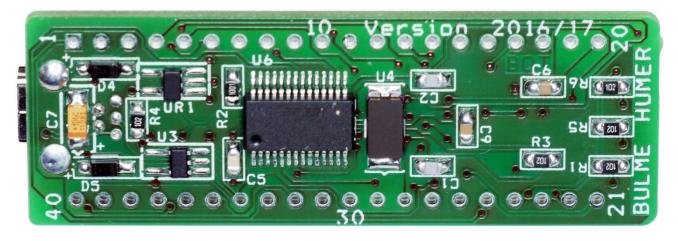


Abbildung 2: Unterseite des Microboards © Foto Schönauer (SHO)

1.2 Anschlussbelegung

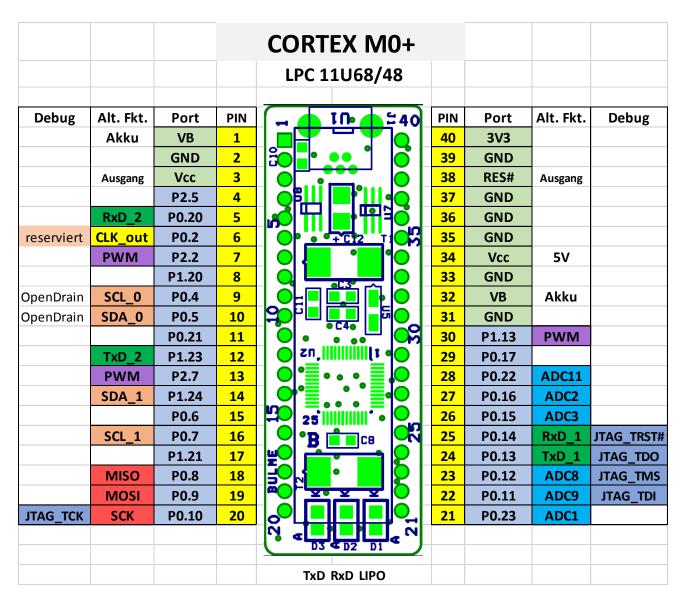


Abbildung 3: Anschlussbelegung des Microboards

Im obigen Bild sind folgende Elemente dargestellt:

- Anschluss-PIN (Nummer der DIL40 Reihe)
- Portanschluss am Microcontroller
- Alternative Funktion der Portleitung des Microcontrollers
- JTAG Anschluss für die Verwendung eines Debuggers
- LEDs D1,D2,D3 zur Darstellung der Signale Akkuladen, RxD und TxD vom UART

1.3 Schaltplan

1.3.1 Microcontroller

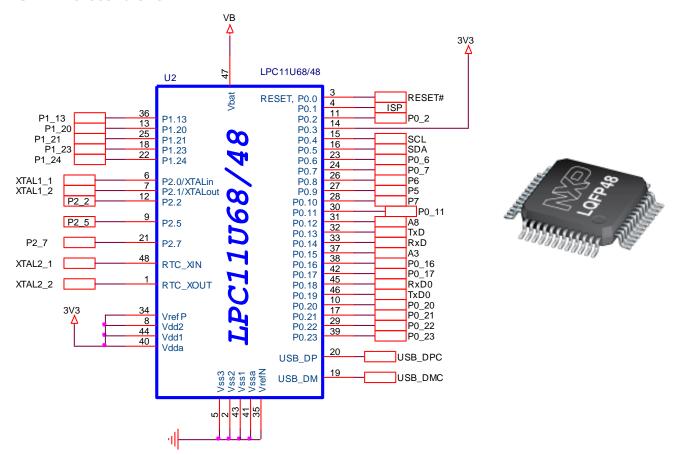


Abbildung 4: Der Microcontroller LPC11U68-48PIN mit Anschlussdefinitionen

Der Microcontroller der Firma NXP¹ hat einen Basiskern der Firma ARM² Cortex M0+. In dieser verwendeten Form kann er über USB, UART oder über JTAG³ programmiert bzw. geflashed werden.

Der Controller wird mit einer Taktfrequenz von 12 MHz versorgt und intern mit einer PLL⁴ auf 48 MHz erhöht. Der nutzbare Programmspeicher beträgt 256 KB, das nutzbare RAM⁵ 32 KB, ein EEPROM⁶ von 4 KB steht als permanenter Datenspeicher zur Verfügung. Wichtige Schnittstellen wie UART, I2C, SPI, Analog-Digital-Umsetzer mit einer Auflösung von 12 Bit, RTC und PWM bzw. zahlreiche I/Os sind implementiert. Eine Echtzeituhr (RTC) und ein Temperatursensor on Chip runden die Besonderheiten dieses Chips ab.

² Acorn RISC Machines

¹ www.nxp.com

³ Joint Test Action Group

⁴ Phase Locked Loop

⁵ Arbeitsspeicher, random access memory

⁶ electrically erasable programmable read-only memory

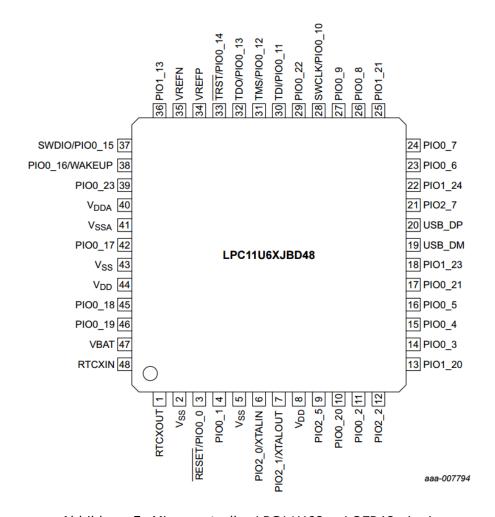


Abbildung 5: Microcontroller LPC11U68 - LQFP48 pinning

Type number	Flash/ KB	EEPROM/ KB	SRAM/ KB	USB	USARTO	USART1	USART2	USART3	USART4	I ² C	SSP	Timers with PWM	12-bit ADC channels	GPIO
LPC11U66JBD48	64	4	12	1	Υ	Υ	Υ	N	N	2	2	6	8	34
LPC11U67JBD48	128	4	20	1	Υ	Υ	Υ	N	N	2	2	6	8	34
LPC11U67JBD64	128	4	20	1	Υ	Υ	Υ	N	N	2	2	6	10	48
LPC11U67JBD100	128	4	20	1	Υ	Υ	Υ	Υ	Υ	2	2	6	12	80
LPC11U68JBD48	256	4	36	1	Υ	Υ	Υ	N	N	2	2	6	8	34
LPC11U68JBD64	256	4	36	1	Υ	Υ	Υ	N	N	2	2	6	10	48
LPC11U68JBD100	256	4	36	1	Υ	Υ	Υ	Υ	Υ	2	2	6	12	80

Tabelle 1: Lieferbare Typen des Microcontrollers

Das Microboard ist mit einem LPC11U68JBD48 bestückt.

1.3.2 Taktversorgung

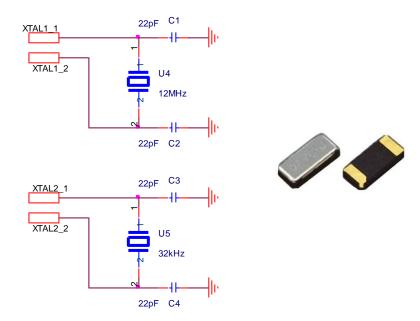


Abbildung 6: Taktversorgung für den Microcontroller und der Echtzeituhr (RTC)

Der Quarz U4 mit 12 MHz dient zur Taktgenerierung für den Microcontroller. Die bereits integrierte Echtzeituhr (RTC) arbeitet mit einer eigenen Spannung (VB). Für den Betrieb der RTC ist noch ein externer Uhrenquarz U5 mit einer Taktfrequenz von 32768 Hz notwendig. Die Genauigkeit der Echtzeituhr ist maßgeblich von der Genauigkeit und der Temperaturstabilität des Uhrenquarzes abhängig.

1.3.3 USB Anschluss

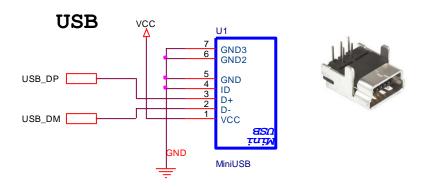


Abbildung 7: Pin-Belegung des USB-Mini Anschlusses

1.3.4 USB/UART

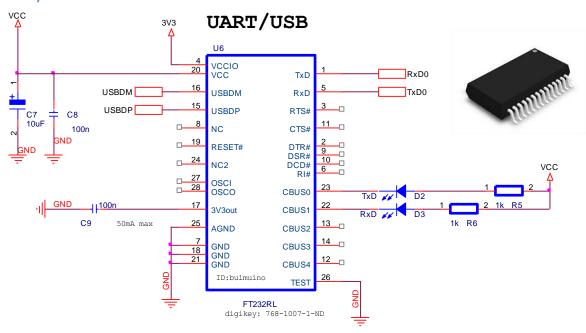


Abbildung 8: USB-UART-Controller der Firma FTDI

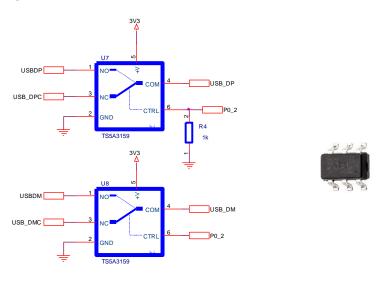


Abbildung 9: Umschaltung UART-USB durch den PortPin P0.2

Um in der jeweiligen Anwendung nicht 2 USB Buchsen (einmal USB und dann UART) verwenden zu müssen ist ein Umschalter (Analogschalter) verwendet worden. Im Zustand nach dem RESET ist der USB Connector direkt mit dem USB Eingang des Microcontrollers verbunden. Der Widerstand R4 sorgt für ein LO am Control-Eingang von U7 und U8. Durch die Aktivierung des BOOT-Modus kann direkt über die USB Schnittstelle programmiert werden.

Während der Betriebsphase RUN kann durch den PortPin P0.2 (High-Pegel) die UART Schnittstelle an die USB Buchse angekoppelt werden. Durch die Software können dann sehr einfach über den "printf"-Befehl Daten an einen Host weitergeleitet werden. Siehe Kapitel "UART".

1.3.5 **RESET / BOOT**

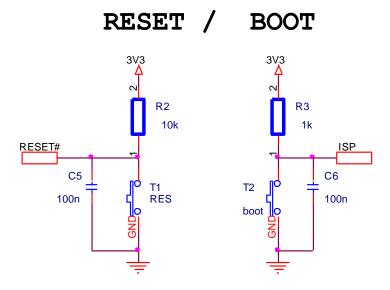


Abbildung 10: Schaltung für RESET und BOOT (für Programmdownload)

Um das Board in den BOOT-Modus zu bringen, ist es notwendig das Board zuerst an den PC über ein USB-Mini-Kabel anzuschließen. Als nächstes wird die Taste T2 gedrückt und lässt man sie gedrückt. Im Anschluss dann kurz die Taste T1 drücken. Taste T2 kann dann wieder losgelassen werden.

Je nach PC kann es etwas dauern, bis das Betriebssystem einen USB-Stick erkennt und dem Microcontrollerboard einen Laufwerksbuchstaben zuweist. Weiteres im Kapitel "Programm downloaden" (www.mbed.org).

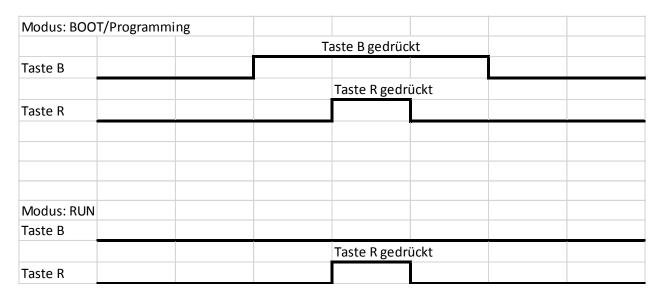


Abbildung 11: Tastenfunktion für RESET und BOOT (für Programmdownload)

1.3.6 Längsregler 3,3 V

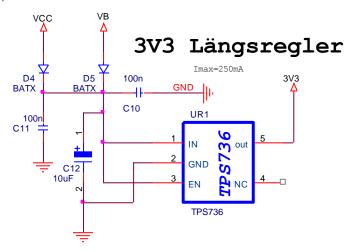


Abbildung 12:Schaltung für den 3,3 V Regler

Auf diesem Board wird der Baustein TPS736-3.3 verwendet. Dieser Baustein zeichnet sich durch einen kleinen Längsspannungsabfall (ca. 120 mV) aus und er kann damit auch bei einer Versorgung mit einer LIPO Zelle eine Ausgangsspannung mit 3.3 V liefern, wenn die Zellenspannung auf 3,5 V abgesunken ist. Die maximale Stromentnahme ist dabei 250 mA. Die 2 Schottky Dioden D4 und D5 erlauben eine universelle Speisung von Akku (3,7 V) und USB (VCC).

Akku Ladeschaltung

1.3.7 LIPO Lademanagement

VCC U3 VB USB S GND CHG# MAX1555

Abbildung 13: Schaltung für das Lademanagement einer LIPO-Zelle.

Der Baustein U3 steuert den Ladestrom einer Zelle mit einer maximalen Ladespannung von 4,2 V. Ein entsprechender Tiefentladungsschutz ist dabei nicht integriert.

Der Ladezyklus wird durch die Leuchtdiode D1 visualisiert.

1.3.8 Externe Kontakte

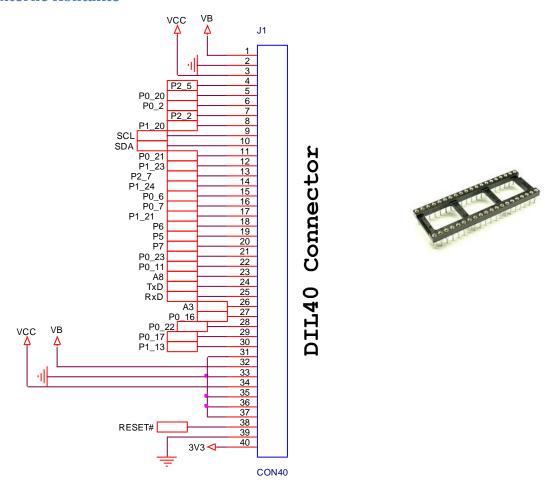
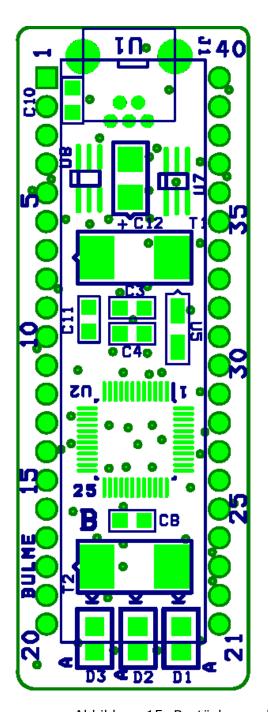



Abbildung 14: Anschlussbelegung des DIL40 - Connectors

Bedeutung folgender Anschlüsse:

Vcc	5 V, verbunden mit der USB-Buchse
VB	Eingangsspannung einer Lithiumzelle (3,7 V)
PX_X	jeweiliger Portanschluss des Microcontrollers laut Datenblatt
PX	Nomenklatur entsprechend mbed (www.mbed.org)
GND	Masseanschluss
RESET#	Reset-Anschluss (LOW-active) (Ausgang)

1.4 Bestückungsplan

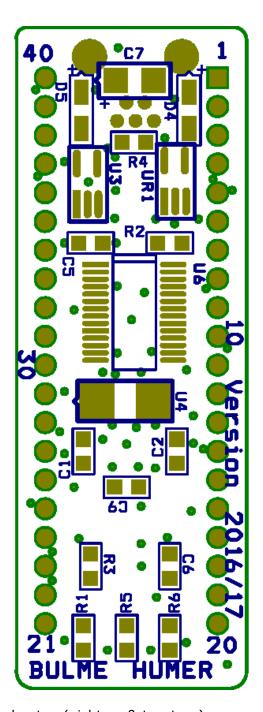
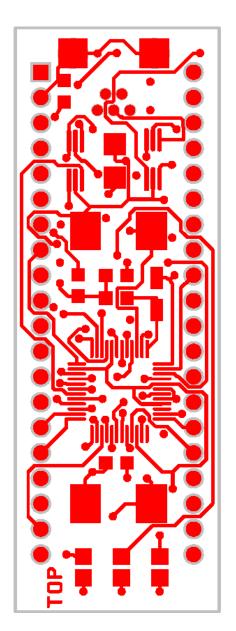



Abbildung 15: Bestückungsplan oben und unten (nicht maßstsgetreu)

1.5 Layout

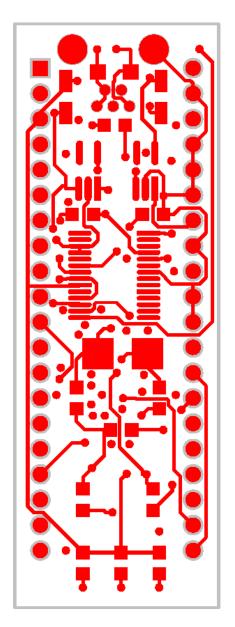


Abbildung 16: Darstellung des Layouts oben und unten, ohne Masseflächen (nicht maßstäblich)

Die doppelseitige Leiterplatte hat eine Größe von 50x30 mm. Sie wird durchkontaktiert, mit doppelseitiger Lötstoppmaske und Bestückungsdruck geliefert. Der Preis ist stark von der Stückzahl abhängig und bewegt sich etwa um €1,-. Die Pads⁷ sind um etwa 25 % größer definiert, damit ist ein Löten von Hand leichter möglich.

Einige Beispiele für Leiterplattenlieferanten:

<u>www.pcb-pool.com</u> <u>www.multi-circuit-boards.eu</u> www.seeedstudio.com u.a.

-

⁷ Footprint = Lötflächen der einzelnen elektrischen Anschlüssen

1.6 Stückliste

		37	·				
Pos.	Stk.	Benennung	Bezeichnung	Gehäuse	Schaltplan	RS-Nr.	Preis
1	1	Microcontroller	LPC11U68/48	LQFP48	U2;	kA	kA
2	1	Lith. Lader, Maxim	MAX1555	SOT-23	U3;	732-8730	1,02
3	1	Spannungsregler 3V3	TPS736-33	SOT-23	UR1;	102-5594	1,03
4	2	Analog Switch	TS5A3159	SOT-23	U7; U8;	662-2808	0,45
5	1	UART/USB	FT232RL	SSOP	U6;	406-580	2,95
6	1	LED, rot, 100 mcd	rot	0805	D1;	466-580	0,05
7	2	LED	gelb	0805	D2; D3;	466-3835	0,10
8	3	SMD-Widerstand	1k	0805	R1; R3; R4;	Rolle – 4k	
9	1	SMD-Widerstand	10k	0805	R2;	Rolle – 4k	
10	4	Kondensator	12pF	0805	C1;C2; C3; C4;	Rolle - 4k	
11 12	2	Kondensator Elko	100nF 10uF	0805 0805	C5; C6; C8; C9; C10; C11, C7;C12	Rolle – 4k	
13	2	Schottky Diode 30V	0,5A - BATXX	0805	D4; D6;	545-3291	0,15
14	1	Mini-USB Buchse PCB	90 Grad	USB-B	U1;	515-2005	1,02
15	1	Quarz	12MHz	SMD-2	U4;	703-1947	0,95
16	1	Quarz	32,768kHz	SMD-2	U5;	727-6279	0,76
17	2	Mini Taster	1 polig	SMD	T1; T2;	378-6325	0,21
18	1	PCB (Platine)	50x13mm	2 Lagig		kA	1,0
					5"		

Tabelle 2: Stückliste, RS-Nr. bedeutet Bestell-Nr. der Firma RS-Components (BBG Lieferant)
Stückliste, RS-Nr. bedeutet Bestellnr. der Firma RS-Components (BBG⁸

Anmerkungen zu genannter Position:

ad1) Der Microcontroller ist über www.mouser.at, www.digikey.at, www.farnell.at etc. erhältlich. Die Kosten liegen dabei etwa zwischen 2 und 4 Euro (abhängig von der Stückzahl und Transportkosten).

ad 8+9+10+11+12) Rollenware, 4000 Stück pro Rolle, Preis wenige Euro

_

Lieferant)

⁸ Bundes Beschaffungsgesellschaft

2 Programmbeispiele

2.1 Digital-Out - Blinky

In diesem Beispiel soll eine LED im Sekundentakt blinken. Die Verwendung eines kostengünstigen Protoboards (auch Steckboard oder Steckbrett genannt) erleichtert den Aufbau.

Materialbedarf:

1x M0+ Microboard

1x Protoboard mit 3 Verbindungskabel

1x Widerstand, Wert zwischen 75 und 220 Ω (75 \leq R1 \leq 220 Ω)

1x Leuchtdiode (z.B. rot)

Die Helligkeit der Leuchtdiode wird durch den durchfließenden Strom bestimmt, der durch die Widerstandsgröße von R1 bestimmt wird. Die Durchflussspannung einer roten LED beträgt 1,8V.

$$I = \frac{3,3-1,8 \text{ [V]}}{\text{R1 } [\Omega]} \text{ [A]}$$

Für einen Widerstand von 75 Ω ergibt sich ein Strom von 20 mA, für einen Wert von 220 Ω stellt sich ein Strom von 6,8 mA ein.

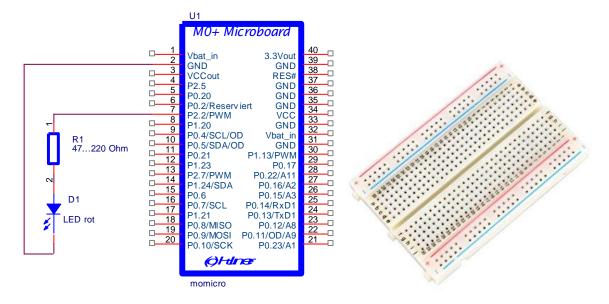


Abbildung 17: Schaltplan für den Aufbau auf einem Protoboard, R1 und D1 werden laut Schaltplan verdrahtet.

Die Portleitungen an einem Microcontroller können unterschiedlich konfiguriert werden. In diesem Beispiel wird die Portleitung P2.2 als Ausgang definiert.

Bei der Ausgangskonfiguration wird dabei der Mode "push pull" verwendet. Dabei hat hi den Pegel 3,3 V und low den Pegel 0 V.

```
****************
/* ****** LED Blinklicht mit der Periode von 1 Hz ******** */
/* **** BULME Graz, Elektronik und Technische Informatik, Humer **** */
#include "mbed.h"
                      // Einbindung - Library mbed
int main() {
   while(1) {
                            // Endlosschleife
      myled = 1;
                            // LED = on, Ausgang hat 3,3 V
      wait(0.5);
                            // Warte 0,5 Sekunden
      myled = 0;
                            // LED = off, Ausgang hat 0 V
      wait(0.5);
                            // Warte 0,5 Sekunden
   }
                            // Ende Endlosschleife
}
                            // end main
```

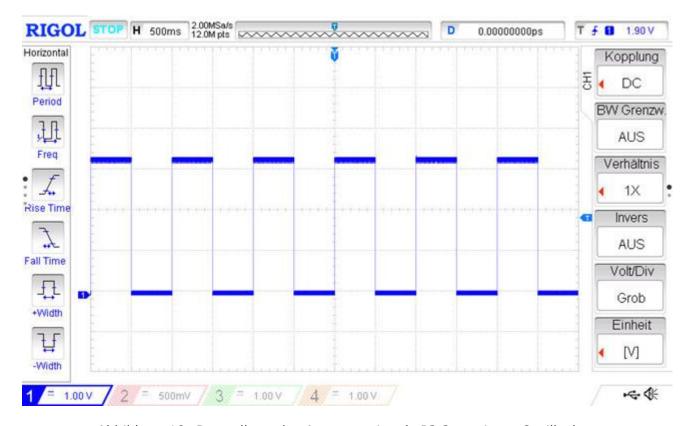


Abbildung 18: Darstellung des Ausgangssignals P2.2 an einem Oszilloskop

Am Signalverlauf (x-Achse = 500 ms/Div. und y-Achse = 1 V/Div.) lässt sich der Sekundentakt mit den Spannungspegeln 0 und 3,3 V erkennen.

2.2 4 Bit Lauflicht

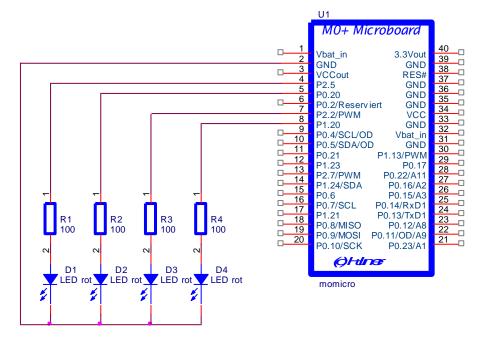


Abbildung 19: Aufbau eines 4 Bit Lauflichtes am Protoboard

Als Ausgänge werden die Portleitungen P2.2, P1.20, P0.4 und P0.5 verwendet. Die einzelnen Portleitungen müssen dabei aber nicht einzeln als DigitalOut, sondern gleich als BusOut definiert werden. Dies bedeutet, dass mehrere Portleitungen als ein Bus definiert und implementiert werden können (hier 4 Leitungen oder 4 Bit).

```
/* *** 4 Bit Lauflicht mit Bus-Konfiguration der Portleitungen **** */
/* **** BULME Graz, Elektronik und Technische Informatik, Humer **** */
#include "mbed.h"
BusOut myleds(P2_5,P2_20,P2_2,P1_20);
                                            // Definition der 4 LEDs als Bus
/* ******** Variablendefinition ************ */
                                 // Definition der Variable i, Integer
int i;
/* ********** Hauptprogramm ************ */
main()
     while(1)
                                 // Endlosschleife
           myleds=1<<i;
                                 // Daten um 1 Bit nach links schieben
           wait(0.2);
                                 // warte 200msec
           i++;
                                 // Variable i um den Wert 1 erhöhen
           if(i==4) i=0;
                                 // Wenn i=4, dann Rücksetzen
                                 // end while
     }
                                 // end main
}
```

2.3 4 Bit Zähler

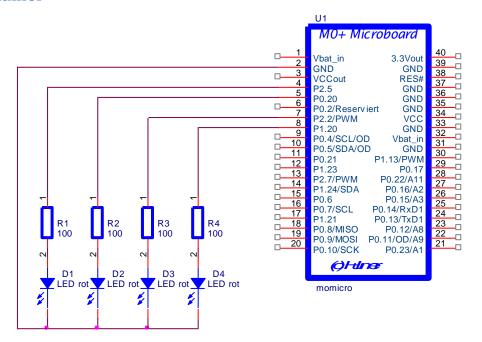


Abbildung 20: Aufbau eines 4 Bit Zählers am Protoboard

Die Zählfolge soll dabei 0,1,2,3,4,5,6,7,0....(modulo 8) sein.

```
/* ***** 4 Bit Zähler mit Bus-Konfiguration der Portleitungen ****** */
/* **** BULME Graz, Elektronik und Technische Informatik, Humer **** */
#include "mbed.h"
BusOut myleds(P2_5,P2_20,P2_2,P1 20); // Definition der 4 LEDs als Bus
/* ********** Variablendefinition **************** */
/* ************* Hauptprogramm ************************ //
main()
{
     myleds=0;
                                       // Zählerstand auf 0 setzen
                                       // Endlosschleife
     while(1)
     {
           wait(0.5);
                                       // warte 500 msec
                                      // Variablenwert um 1 erhöhen
           myleds++;
                                      // Wenn myleds=8, dann Rücksetzen
           if (myleds==8) myleds=0;
                                       // end while
     }
                                       // end main
}
```

2.4 4 Bit Zähler mit beliebiger Zählfolge

In diesem Beispiel soll ein Zähler mit folgender Zählfolge realisiert werden.

Zählfolge: 0,3,5,1,6,7,2,4,15,0.....

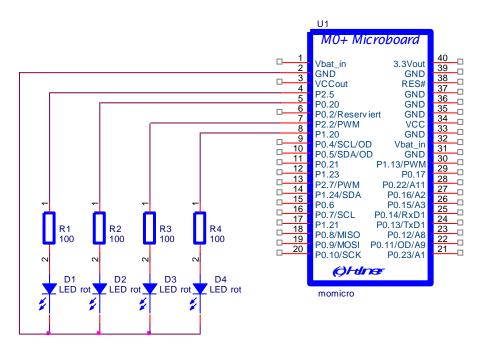


Abbildung 21: Aufbau der Schaltung am Protoboard

```
/* ***********************
  ****** Zähler mit folgender Abfolge: 0,3,5,1,6,7,2,4,0,15 ******** */
#include "mbed.h"
BusOut myleds(P2 5,P2 20,P2 2,P1 20);
                                          // Definition der 4 LEDs als Bus
/* ******** Variablendefinition ************* */
                                         // Tabelle der Abfolge
char tabelle [9] = \{0, 3, 5, 1, 6, 7, 2, 4, 15\};
int i=0;
                                          // Variable i
/* ********** Hauptprogramm ************ */
int main()
                                          // Beginn Hauptprogramm
    while (1)
                                          // Beginn Endlosschleife
      myleds = tabelle[i];
                                          // Tabellenaufruf 0<=i<=7</pre>
      wait(0.2);
                                          // Warte 200 ms
                                          // Erhöhe den Wert von i um 1
       if(i==9) i=0;
                                          // Rücksetzen wenn i = 9
         // end while
    // end main
```

Ausgangspegel (4 Bit) im 200 ms Zeitraster:

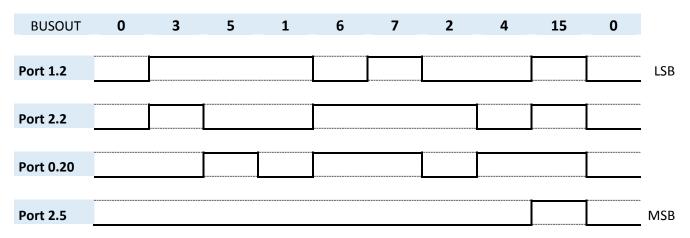


Abbildung 22: Ausgangspegel (4 Bit) im 200ms Zeitraster:

Im obigen Diagramm ist der jeweilige Pegel an den Ausgängen (P0.5 ... P2.2) im Zeitraster 200 ms dargestellt. Durch die 4 Bit am Ausgang sind 16 Werte möglich, hier sind nur 9 verwendet worden. Die Verwendung einer Tabelle im Programm ist universell möglich.

2.5 1 Hz - Ticker

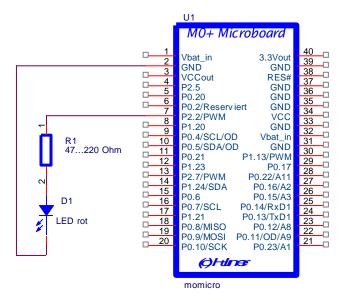


Abbildung 23: Aufbau am Protoboard, Blinklicht 1 Hz

```
***** Verwenden einer Tickerfunktion mit 500 ms Basis
#include "mbed.h"
                            // Library mbed
                      // Def. der Tickerfunktion mit Namen flipper
Ticker flipper;
DigitalOut led1(P2 2);
                           // LED am Port P2.2
/* ************* Interruptfunktion
                                **********
void flip()
                      // Interruptfunktion flip()
{
    led1 = !led1;
                       // Logisches Invertieren des Spannungspegels
                       // end void
}
/* *************** Hauptprogramm
                                ******** * /
int main()
{
    led1 = 1;
    flipper.attach(&flip, 0.5); // Interruptaufruf alle 500 ms
                                 // Endlosschleife
    while(1);
                                 // end main
}
```

Bei diesem Programm wird der interne Interrupt als Ticker verwendet. Die Interrupt-Funktion ist im Programmcode mit einem Rahmen hinterlegt. Die dazugehörige Definition des Tickers mit dem Namen "flipper" ist am Programmbeginn definiert. Die Definition des Interrupts und der dazugehörige Funktionsaufruf ist im Hauptprogramm realisiert.

2.6 UART - "Hello world"

2.6.1 Allgemeines

Die Beispielsoftware sendet den Textstring "Hello world" über die serielle Schnittstelle (UART) an den PC. Über einen virtuellen COM kann die Zeichenkette mit Hilfe eines Terminalprogramms auf dem Schirm dargestellt werden. Bei der Erstellung des Programms darf nicht auf die Umschaltung USB-UART vergessen werden. Für die Visualisierung muss auf dem PC ein Terminalprogramm installiert sein.

Als Beispiele für Terminalprogramm seinen hier angeführt:

- Putty066
- HTerm
- RealTerm
- uva.

Beim erstmaligen Betrieb des Bausteins FT232RL muss das Betriebssystem erst eine Geräteinstallation durchführen. Bei Windows10 erfolgt dies automatisch, bei Windows7 muss eventuell ein Treiber des Herstellers (FTDI) geladen werden. Für das Senden der Daten über UART wird in diesem Beispiel die Funktion:

printf("Format String", <wert1>.....) verwendet. Für den Format String gilt folgende Notation.

%d oder %i "decimal" - Integerwert mit Vorzeichen

%u "unsigned" - vorzeichenloser Integerwert

%x und %X "HEX" - Integer in hexadezimaler Schreibweise

%p "pointer" - Zeiger bzw. Speicheradresse

%f "float" - Fließkommazahl

%e "exponential" - Fließkommazahl in wissenschaftlicher Notation (m.nnExx)

%c "character" - ein einzelnes Zeichen

%s "string" - Zeichenkette

Die Umschaltung zwischen USB und UART erfolgt durch die Portleitung P0.2. Ein HI-Pegel verbindet die Funktionsgruppe UART mit der USB Buchse, Daten können übertragen werden.

2.6.2 Programm

```
************
/* ***** BULME GRAZ, Serielle Schnittstelle, UART, Hello World
/* ***** Abteilung Elektronik und Technische Informatik / Humer ******* */
#include "mbed.h"
                          // Einbindung der mbed Library
DigitalOut sconhi(P0 2);
                          // P0.2=Ausgang (Umschalter für USB-UART)
Serial pc(P0 19, P0 18); // TxD, RxD Definition der Portleitung
/* *********** Hauptprogramm ************* */
                       // Hauptprogramm
int main()
                       // Datenübertragungsgeschw. 9600 Bit/sec
   pc.baud(9600);
                       // UART an USB verbinden
   sconhi=1;
                       // Warte 5 Sekunden
   wait(5);
                       // Endlosschleife Beginn
   while (1)
    {
    pc.printf("Hello World\n\r"); // Ausgabe der Zeichenkette
                    // Endlosschleife Ende
                   // end main
}
```

2.6.3 Ausgabe

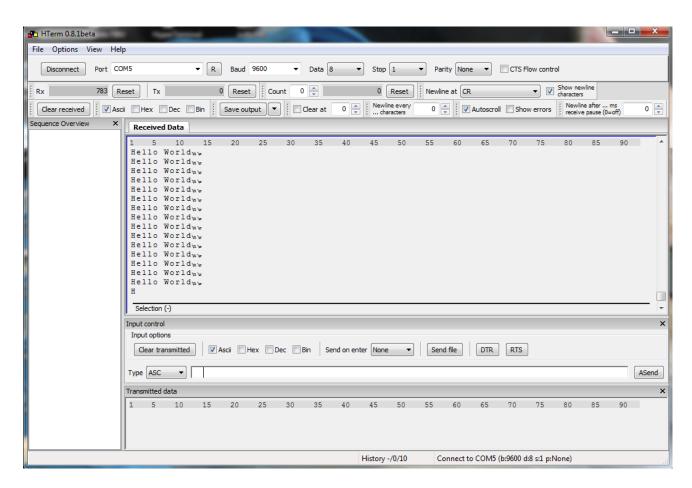


Abbildung 24: Visualisierung am PC mit Hilfe der Software HTerm

2.7 Einfacher Taschenrechner

2.7.1 Programm

Beispiel für einen sehr einfachen Taschenrechner. Die Grundfunktionen (+, -, /, *) sind integriert. Eine Minimalbeschreibung wird vor der Eingabe der Zahlen ausgegeben. Die Zahlenwerte haben den Datentyp float (Gleitkomma).

```
/* ***** Abteilung Elektronik und Technische Informatik / Humer ******* */
#include "mbed.h"
DigitalOut sconhi(PO_2); // PO.2=Ausgang (Umschalter für USB-UART) Serial pc(PO_19, PO_18); // TxD, RxD Definition der Portleitung
/* *************** Variablendefinitionen ********************** */
float zahl1;
float zahl2;
float erg;
char op;
main()
   pc.baud(9600); // Datenübertragungsgeschw. 9600 Bit/sec
                      // UART an USB verbinden
   sconhi=1;
   wait(5);
                      // Warte 5 Sekunden, Verbindung am PC herstellen
while (1)
{
 pc.printf("Geben Sie zwei Zahlen ein: \n"); // Ausgabe
 pc.printf("Zahl1 Operator Zahl2 <return>, Komma mit Punkt\n");
 pc.scanf("%f %c %f",&zahl1,&op,&zahl2);  // Einlesen der Daten
pc.printf("Zahl 1 = %7.2f \n",zahl1);  // Ausgabe der Zahl1
 pc.printf("----\n");
   switch (op)
   {
   case '+':
   pc.printf("Ergebnis = %7.2f\n",(float)zahl1+zahl2); // Ergebnis für +
   case '-':
   pc.printf("Ergebnis = %7.2f\n",(float)zahl1-zahl2); // Ergebnis für -
   break;
   pc.printf("Ergebnis = %7.2f\n",(float)zahl1/zahl2); // Ergebnis für /
   break;
   case '*':
   pc.printf("Ergebnis = %7.2f\n",(float)zahl1*zahl2); // Ergebnis für *
   break;
   } /* end switch */
                                     // Leerzeile
 pc.printf("\n\r");
} /* end while */
} /* end main */
```

2.7.2 Visualisierung

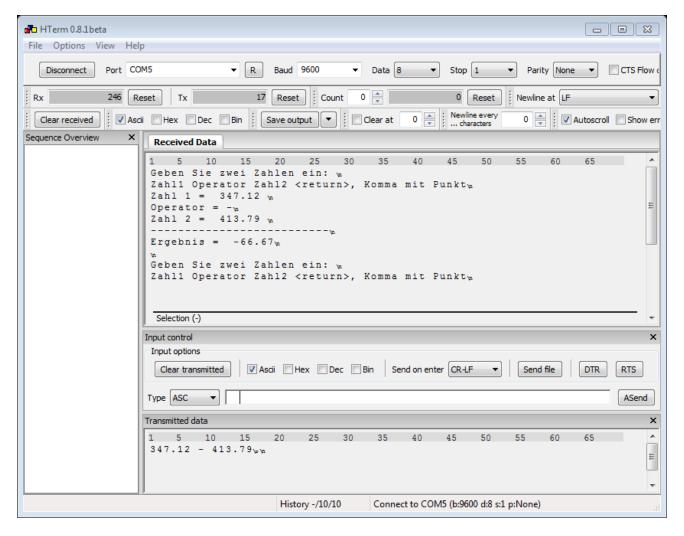


Abbildung 25: Visualisierung am PC mit HTerm

Die Verbindung wird sehr einfach hergestellt:

Das Programm HTerm wird gestartet, alle Einstellungen wie Port, Baudrate, Newline und Sendeabschluss werden eingestellt. Als nächstes wird am Microboard die RESET-Taste gedrückt. Das Board meldet sich am PC an und bekommt die installierte Portadresse zugewiesen. Durch den Button "Connect" in der HTerm-App wird die Verbindung hergestellt.

2.8 Zeichenumkehr

2.8.1 Programm

```
/* **** BULME GRAZ, eingegebene Zeichenfolge umdrehen ********* */
/* **** Abteilung Elektronik und Technische Informatik / Humer ****** */
#include "mbed.h"
DigitalOut sconhi(PO_2); // PO.2=Ausgang (Umschalter für USB-UART) Serial pc(PO_19, PO_18); // TxD, RxD Definition der Portleitung
// Zählvariable
int i=0;
                       // Speicher für max. 80 Zeichen (Array)
char eingabe[80];
                      // Definition Pointer
char *pointer;
main()
  pc.baud(9600);
                    // Datenübertragungsgeschw. 9600 Bit/sec
                    // UART an USB verbinden
  sconhi=1;
                    // Warte 5 Sekunden
  wait(5);
                    // Endlosschleife
  while(1)
     pc.printf("\nGeben Sie einen Text ein:\n"); // Ausgabe
     // Zählvariable
     i=0;
     while ((*pointer=pc.getc())!=13)
                               //Zeicheneingabe speichern
                               // bis die Taste Enter gedrückt
        pc.putc(*pointer); // lesen und auf die Adresse von Pointer schreiben
        i++;
                               // increment i
        pointer++;
                               // Zeiger, Zeigeradresse um 1 erhöhen
     }
 pc.printf("\nDer eingegeben Text lautet:\n %s \n",eingabe);
 pc.printf("Die Anzahl der eingegebenen Buchstaben sind: %d\n",i);
i=strlen(eingabe)-1;  // i=Anzahl der Zeichen - 1
     // Setze Zeiger auf das letzte Zeichen
     while (i \ge 0)
            pc.putc(*pointer); // Ausgabe der Zeichen aus dem Array
            pointer--;  // Zeiger um eine Stelle tiefer
                         // decrement i
     } // end while
  }// end while
}// end main
```

2.8.2 Anzeige

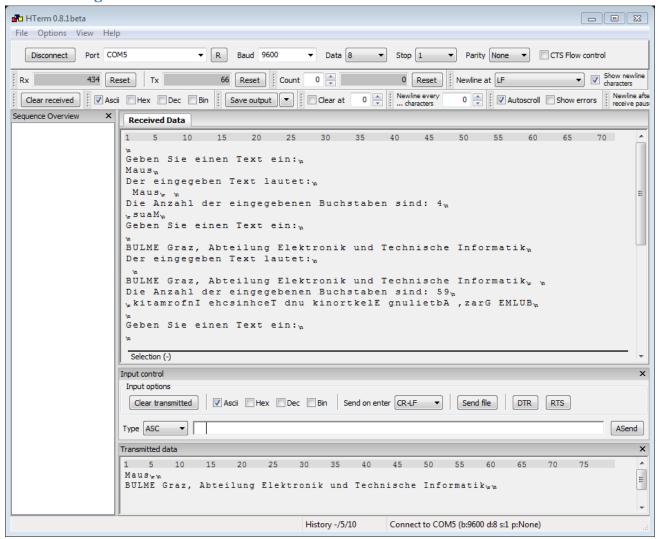


Abbildung 26: Visualisierung Ein/Ausgabe am PC

In diesem Beispiel werden 2 Wörter eingegeben:

- a) Maus
- b) BULME Graz, Abteilung Elektronik und Technische Informatik

2.8.3 Spezielle Zeichendarstellung

```
/* ***** BULME GRAZ, eingegebene Zeichenfolge umdrehen, Ausg. in Dec,Hex ** */
/* **** Abteilung Elektronik und Technische Informatik / Humer ****** */
/* *******
#include "mbed.h"
DigitalOut sconhi(PO_2); // PO.2=Ausgang (Umschalter für USB-UART)
Serial pc(PO_19, PO_18); // TxD, RxD Definition der Portleitung
int laenge;
int i;
char eingabe[40],invers[40];
{ pc.baud(9600);
                       // Datenübertragungsgeschw. 9600 Bit/sec
                        // UART an USB verbinden
   sconhi=1;
                        // Warte 5 Sekunden
   wait(5);
while (1)
 { pc.printf("\nGeben Sie einen Text ein:\n");
  pc.scanf("%s", &eingabe);
                                 // Wort einlesen und in Array speichern
  pc.printf("\nDer eingegeben Text lautet:\n%s \n",eingabe); // Ausgabe
  pc.printf("Die Anzahl der eingegebenen Buchstaben sind: %d\n",(int)laenge);
/* ***** Ausgabe des Wortes mit einer Buchstabenweite von 5 Zeichen **** */
 for(i=0;i<laenge;i++)</pre>
     pc.printf(" %c ",eingabe[i]);
 pc.printf(" Buchstaben\n");
/* ***** Ausgabe des ASCII-Codes in Hexadezimaler Darstellung ******* */
 for(i=0;i<laenge;i++)</pre>
     pc.printf("%3X ",(int)eingabe[i]);
 pc.printf(" HEX-Code\n");
/* ****** Ausgabe des ASCII-Codes in Dezimaler Darstellung ******* */
 for (i=0;i<laenge;i++)</pre>
    pc.printf("%3d ",(int)eingabe[i]);
 pc.printf(" Dezimal-Code\n");
/* ***** Zeichenfolge umdrehen und in ein ARRAY invers schreiben **** */
 for (i=laenge-1;i>=0;i--)
   invers[(laenge-1)-i]=eingabe[i];
/* ***** Ausgabe des Wortes mit einer Buchstabenweite von 5 Zeichen *** */
 pc.printf("Eingabe invers= %s\n",invers);
 for (i=0;i<laenge;i++)</pre>
    pc.printf(" %c ",invers[i]);
 pc.printf(" Buchstaben\n");
/* ***** Ausgabe des ASCII-Codes in Hexadezimaler Darstellung ****** */
 for (i=0;i<laenge;i++)</pre>
    pc.printf("%3X ",(int)invers[i]);
 pc.printf(" HEX-Code\n");
/* ***** Ausgabe des ASCII-Codes in Dezimaler Darstellung ******** */
 for(i=0;i<laenge;i++)</pre>
    pc.printf("%3d ",(int)invers[i]);
 pc.printf(" Dezimal-Code\n");
} //end main while
```

2.8.4 Anzeige

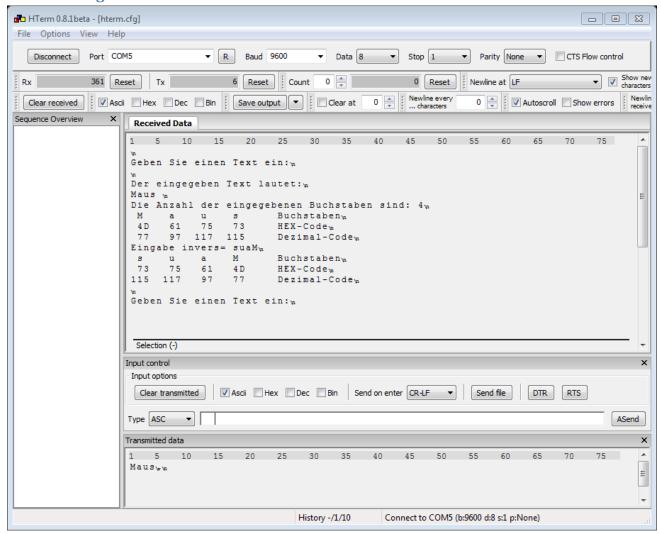


Abbildung 27: Visualisierung der Eingabe "Maus" und deren Codes am PC

2.9 Elektronischer Würfel

2.9.1 Allgemeines

Für einen elektronischen Würfel wird ein Pseudozufallszahlengenerator verwendet. Für die Zufallszahl benötigt der Microcontroller Befehle für die Generierung einer Zufallszahl. Durch die Befehle ist die ermittelte Zahl per Definition nicht zufällig. In den meisten Anwendungen ist die Pseudozufallszahl jedoch ausreichend.

2.9.2 Schaltung

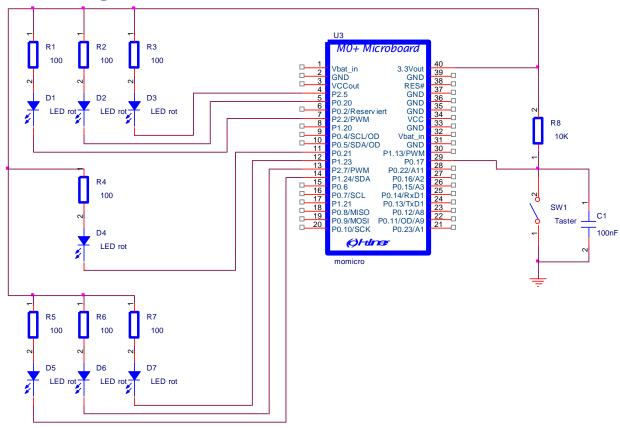


Abbildung 28: Schaltung für den elektronischen Würfel

Es werden Zahlen von 1 ... 6 werden, dabei wird folgender Zusammenhang festgelegt:

Zahl 1:	Leuchtdiode	D4 aktiv	
Zahl 2:	Leuchtdioden	D1 und D7 aktiv	
Zahl 3:	Leuchtdioden D1	., D4 und D7 aktiv	
Zahl 4:	Leuchtdioden D1	., D3, D5 und D7 aktiv	
Zahl 5:	Leuchtdioden D1	., D3, D5, D7 und D4 aktiv	
Zahl 6:	Leuchtdioden D1	., D2, D3 und D5, D6, D7 aktiv	

Ein weiterer wichtiger Punkt ist die negative Logik in der angeführten Schaltung. Ein LO-Signal am Ausgang bringt die LED zum Leuchten. Im Programm sind die einzelnen Ausgänge in einem Bus zusammengefasst, wobei die Portleitung P1.24 als LSB⁹ definiert ist.

```
BusOut wuerfel (P2_5, P0_20, P2_2, P0_21, P1_23, P2_7, P1_24);
```

Zahl	P2.5	P0.20	P2.2	P0.21	P1.23	P2.7	P1.24	Wert
LED	D1	D2	D3	D4	D5	D6	D7	
1	1	1	1	0	1	1	1	0x77
2	0	1	1	1	1	1	0	0x3E
3	0	1	1	0	1	1	0	0x36
4	0	1	0	1	0	1	0	0x2A
5	0	1	0	0	1	1	0	0x26
6	0	0	0	1	0	0	0	0x08

Tabelle 3: Ausgabe für das entsprechende Würfelergebnis

Entsprechend der Tabelle wird ein Array definiert:

```
int anzeige[7]=\{0xFF,0x77,0x3E,0x36,0x2A,0x26,0x08\};
```

Das Würfelergebnis "0" gibt es nicht, in der Tabelle wurde der Wert 0xFF eingetragen.

Das Würfelergebnis wird in der Interrupt-Funktion mit der Funktion rand() ermittelt. Modulo 6 bedeutet, dass Ergebnisse von 0 ... 5 geliefert werden.

⁹ LSB=Least Signifikant Bit

2.9.3 Programm

In diesem Beispiel wird auf die Funktion rand() zurückgegriffen. Das "gewürfelte" Ergebnis wird über 7 LEDs angezeigt, aber auch der Zahlenwert über die UART Schnittstelle an den PC geschickt. Der Port P0.17 ist als Interrupt definiert und durch die Beschaltung auf fallende Flanke getriggert.

```
/* ******* BULME GRAZ, Temperatursensor LM235 ********** */
/* **** Abteilung Elektronik und Technische Informatik / Humer ****** */
#include "mbed.h"
                             ********* */
/* *********
               Definitionen
BusOut wuerfel (P2 5, P0 20, P2 2, P0 21, P1 23, P2 7, P1 24);
DigitalOut sconhi(P0_2); // P0.2=Ausgang (Umschalter für USB-UART)
Serial pc(P0_19, P0_18); // TxD, RxD Definition der Portleitung
InterruptIn button(P0_17); // Interrupteingang Taste
/* ****** Funktionen
                           ********* */
void init mcboard();
char newerg=0;
int anzeige[7]=\{0xFF, 0x77, 0x3E, 0x36, 0x2A, 0x26, 0x08\};
int wuerfelerg;
void flip()
           // Interruptfunktion flip()
{
wuerfelerg = rand()%6 + 1;
newerg=1;
             // end void
}
/* ************ Hauptprogramm
                              ********* */
int main()
  pc.printf("Elektronischer Wuerfel\n");
  while (1)
     if (newerg==1)
        {
           pc.printf("Ergebnis=%d\n", wuerfelerg);
           wuerfel=anzeige[wuerfelerg];
           wait(0.2);
           newerg=0;
        }
  } // end while
     // end main
/* ****** Funktionen
                             ********* */
void init_mcboard()
  sconhi=1;
                   // UART an USB verbinden
                   // Warte 5 Sekunden
  wait(5);
  button.fall(&flip); // Interrupt bei fallender Flanke
}
```

2.9.4 Ausgabe

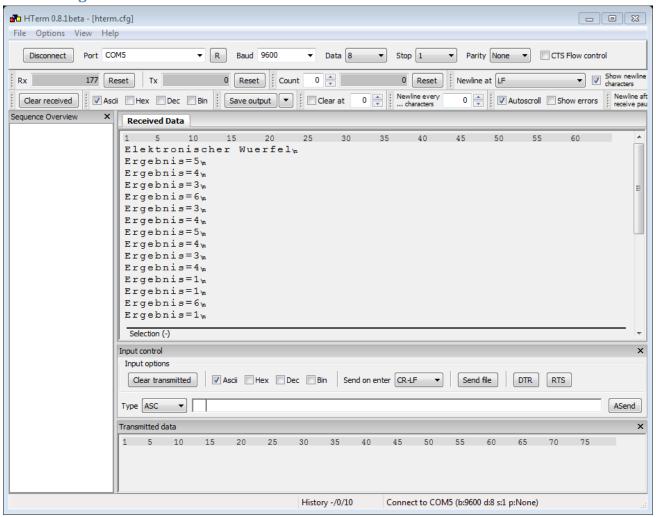


Abbildung 29: Anzeige der Würfelergebnisse am Bildschirm mit einem Terminalprogramm

2.10 **PWM**

2.10.1 Allgemeines

PWM (Pulse Weitenmodulation) ist für viele Anwendungen ein wichtiges Werkzeug in der Microcontrollertechnik. Es stehen 3 Portleitungen zur Verfügung.

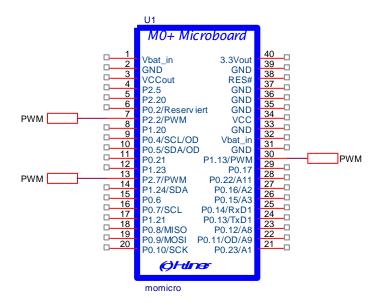


Abbildung 30: 3 Portleitungen für die interne PWM Einheiten

Für die Gehäuseform 48 Pin sind in der mbed-Bibliothek die Portleitung P2.2 oder P2.7 oder P1.13 einsetzbar. Für eine diskrete Programmierung ist nahezu jede Portleitung verwendbar.

2.10.2 Beispiel

2.10.3 Anzeige

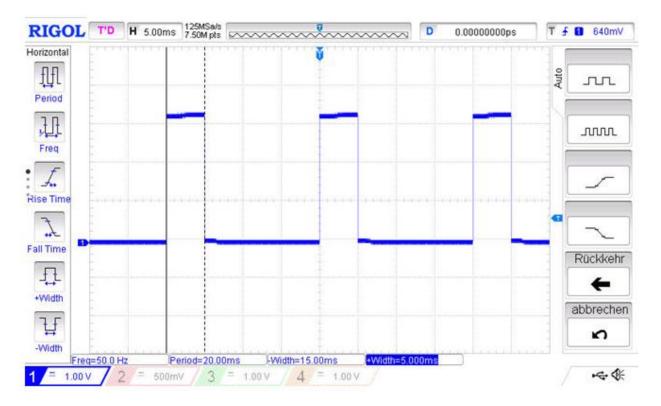


Abbildung 31: Visualisierung der Signalform am Ausgang eines Oszilloskops

2.11 2 Kanal-PWM

In diesem Beispiel werden 2 PWM Signale unterschiedlich erzeugt. Am Ausgang P1.13 wird die Library verwendet, am Ausgang P0.20 wird das PWM Signal mit duty-cycle 50% diskret erstellt.

```
******
         BULME GRAZ, Pulsweitenmodulation 2 Varianten
       Abteilung Elektronik und Technische Informatik / Humer ******* */
#include "mbed.h"
PwmOut mitzi(P1 13);
                         // P1.13 - als PWM-Ausgang definieren
DigitalOut minki(P0 4);
                       // PO.4 - als Digital Out definieren
int main()
   // 5msec Pulse (on), dc=25%, Wertebereich 0..1
   mitzi = 0.25;
                          // Endlosschleife
   while (1)
      minki=!minki;
                      // Portleitung invertieren
                       // Warte 10msec
      wait (0.01);
   }
}
```

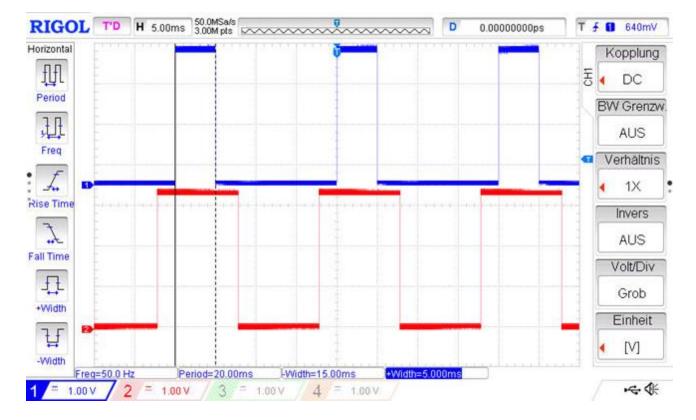


Abbildung 32: Die Darstellung der 2 PWM Signale am Oszilloskop

2.12 Analog-Digital-Umsetzer

2.12.1 Allgemeines

Der ADU¹⁰ ist ein sehr wichtiger Peripheriebaustein eines Microcontrollers, mit dessen Hilfe eine Spannung innerhalb des Versorgungsspannungsbereiches in eine Digitale Zahl umgesetzt wird. Dabei sind die wichtigsten Kenngrößen die Umsetzbreite in Bit, der Eingangsspannungsbereich und die Umsetzgeschwindigkeit. Der verwendete Microcontroller hat einen ADU-Kern mit einer Auflösung von 12 Bit, einen Eingangsspannungsbereich von 3,3 Volt und eine maximale Umsetzgeschwindigkeit von 2 Msps¹¹. Der Microcontroller LPC11U68 hat einen einzigen Analog-Digital-Umsetzer, durch Analogschalter können, je nach Gehäuseform, 12 Kanäle bedient werden. Die Gehäuseform 48 Pin hat 6 Kanäle zur Verfügung.

Eine Auflösung von 12 Bit bedeutet, dass der Eingangsspannungsbereich von 3,3 Volt auf 2^{12} (2^{12} = 4096) Schritte aufgeteilt wird, dabei ergibt sich eine Auflösung der Eingangsspannung von:

$$Aufl\ddot{o}sung = \frac{3.3 \text{ [V]}}{4096} = 0.806 \text{ [mV]}.$$

Am Microboard sind folgende PINs für die Messung einer Analogspannung gekennzeichnet.

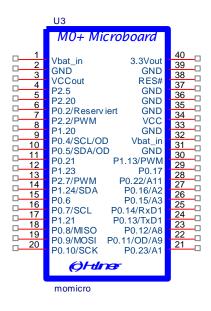


Abbildung 33: Pin-Belegung Microboard

Im obigen Bild ist zu erkennen, dass die Pin 21,22,23,26,27 und 28 für den Analog-Digital-Umsetzer geeignet sind.

¹⁰ Analog-Digital-Umsetzer, englisch: Analog Digital Converter

¹¹ Mega samples per second

2.12.2 Portdefinition

In der Entwicklungsumgebung mbed werden Analogeingänge wie folgt definiert:

```
AnalogIn <name> (PX X); z.B: AnalogIn minki (PO 23);
```

2.12.3 Einlesen einer Analogspannung

Die Analogspannung kann auf 2 verschiedene Arten eingelesen werden:

```
a) <variable>(float) = minki.read();
```

In diesem Fall wird ein Wert (float) mit einem Wertebereich von 0 bis 1 übergeben. Um die Spannung am PIN zu erhalten, muss noch mit der Referenzspannung (hier 3,3 V) multipliziert werden.

```
b) <variable>(int) = minki.read_u16();
```

Im Fall b) ist die Rückgabe der aufgerufenen Funktion ein normierter 16stelliger Ganzzahlwert. Der Wertebereich ist dabei 0 ... 65535 oder Hexadezimal 0 ... 0xFFFF.

In beiden Fällen muss beachtet werden, dass der Analog-Digital-Umsetzer am Eingang eine Sample and Hold (S&H) Stufe hat und die Analogspannung nur in einem sehr kurzen Zeitfenster gelesen wird. Hier kann es durch die Leitungslängen zu Spannungsabfällen und somit zu Messungenauigkeiten kommen. Ein Kondensator in der Nähe des Microcontrollers stützt die Eingangsspannung und liefert die Energie, um einen Spannungseinbruch zu vermeiden.

2.13 Spannungsmessung an einem Potentiometer

2.13.1 Allgemeines

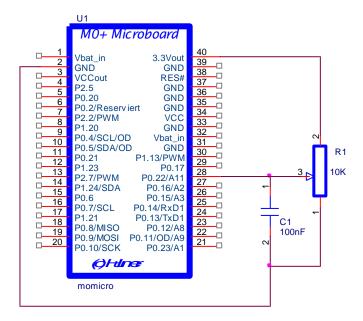


Abbildung 34: Versuchsaufbau für eine Spannungsmessung

Im obigen Bild ist ein Versuchsaufbau für eine Spannungsmessung an einem Potentiometer dargestellt. Die abgegriffene Spannung am Punkt 3 ist mit dem Analogkanal 11 (PIN 28) verbunden. Der Kondensator C1 dient als Stützkondensator für das S&H.

2.13.2 Programm

```
/* **********************
/* **** BULME GRAZ, Spannungsmessung an einem Potentiometer
/* **** Abteilung Elektronik und Technische Informatik / Humer ****** */
#include "mbed.h"
                            // Einbindung der mbed Library
DigitalOut sconhi(P0_2); // P0.2=Ausgang (Umschalter für USB-UART) Serial pc(P0_19, P0_18); // TxD, RxD Definition der Portleitung
                             // Analogeingang Kanal 11 - Potentiometer
AnalogIn Poti(P0 22);
/* ********* Variablendefinition *************** */
int Poti i;
                          // normierter ADC-Wert als 16 Bit Wert 0 ... 0xFFFF
float Poti f;
                           // normierter ADC-Wert als float Wert 0 ... 1
int main()
                  // Hauptprogramm
                         // Datenübertragungsgeschw. 9600 Bit/sec
   pc.baud(9600);
                         // UART an USB verbinden
   sconhi=1;
                         // Warte 5 Sekunden
   wait(5);
                          // Endlosschleife Beginn
   while (1)
    Poti f = Poti.read(); // Wert aus dem ADC 0<=adcntc<=1, float
    Poti i = Poti.read u16(); // Wert einlesen - Ganzzahl 0 ... 65535 (0xFFFF)
    wait(0.5);
                           // Warte 0,5 Sekunden
    pc.printf("Poti: %1.3f[V] %d, 0x%04X\n\r",3.3*Poti f, Poti i, Poti i);
                      // end while
   // end main
```

2.13.3 Ausgabe

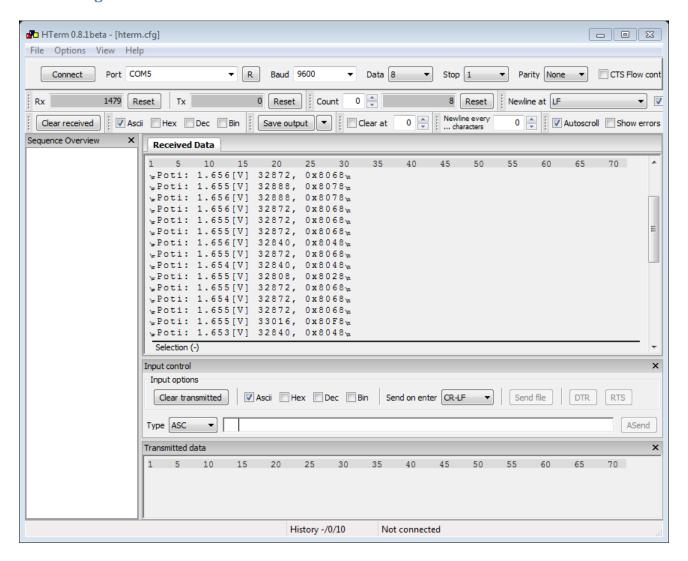


Abbildung 35: Ergebnis der Spannungsmessung am Potentiometer

Die Ausgabe erfolgt in diesem Beispiel mit der Spannung am Potentiometer, dem Dezimalwert und Hexadezimalwert des ADCs.

2.14 Temperaturmessung

2.14.1 Messung mit Analogsensor LM235

2.14.1.1 Allgemeines

Der Temperatursensor LM235 ist ein Präzisionssensor mit einer absoluten Genauigkeit von +/-1 K. Die Ausgangsspannung ist mit 10 mV/K angegeben.

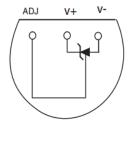
Der Auszug aus dem Datenblatt lautet:

Directly calibrated in K ■

1 °C initial accuracy ■

Operates from 450 µA to 5 mA

Less than 1 Ω dynamic impedance


TO-92 (Plastic package)

SO-8 (Plastic micropackage)

Pin connections

TO-92 (Bottom view)

2.14.1.2 Protoboard Aufbau

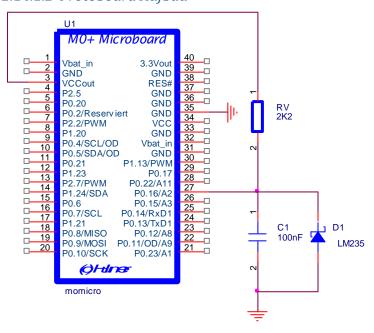


Abbildung 36: Aufbau der Schaltung mit dem IC LM235 auf dem Protoboard

Der Sensor wird über den Widerstand R1 (2200 Ω) mit einer Spannung von 5 V versorgt. Der Strom ist dabei etwa bei einer Raumtemperatur von 20 °C:

$$Strom = \frac{5 - (2,7315 + 0,20)}{2200} = 0,94 [mA]$$

2.14.1.3 Programm

```
/* **** Abteilung Elektronik und Technische Informatik / Humer ****** */
#include "mbed.h"
DigitalOut sconhi(PO_2); // PO.2=Ausgang (Umschalter für USB-UART)
Serial pc(PO_19, PO_18); // TxD, RxD Definition der Portleitung
                     // TxD, RxD Definition der Portleitung
AnalogIn templm235(P0_16); // TXD, RXD Definition der // TxD, RXD Definition der // Temperatursensor LM235
/* ********
                Funktionen
void init_mcboard();
/* *********
                /* ********
                              ********* */
               Hauptprogramm
int main()
  while (1)
     pc.printf("**** Temperaturmessung **** \n"); //Ausgabe
     pc.printf("Temp:= %3.1f Grad Celsius\n\r",330*templm235.read()-273.15);
                // Warte 0.5 Sekunden
     wait(0.5);
     // end while
     // end main
}
/* ********
                Funktionen
                            ********** * /
void init_mcboard()
  pc.baud(9600);
                   // Datenübertragungsgeschw. 9600 Bit/sec
                   // UART an USB verbinden
  sconhi=1;
  wait(5);
                   // Warte 5 Sekunden
}
```

2.14.1.4 Ausgabe

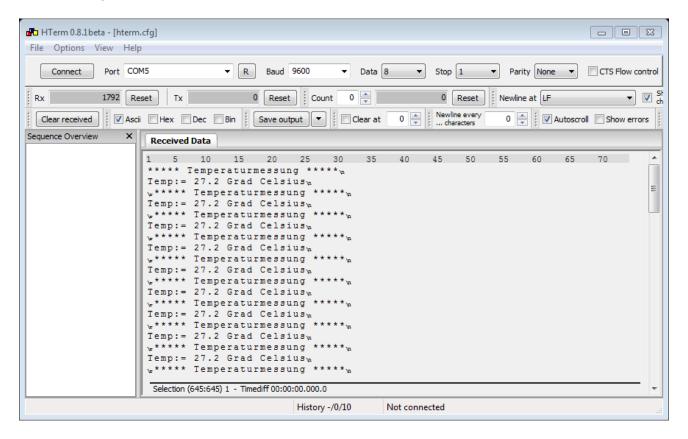


Abbildung 37: Ausgabe der Temperaturmessung

2.14.2 Messung mit NTC-Sensor

2.14.2.1 Allgemeines

Ein NTC¹² Widerstand ist ein Halbleiter und wird in unterschiedlichen Bauformen eingesetzt. Die Widerstands- Temperaturkennlinie ist stark nichtlinear und kann durch folgende Formel beschrieben werden:

$$R_{\rm T} = R_{\rm T_X} \cdot exp \left[\frac{\alpha_{\rm x}}{100} \cdot (T_{\rm x} + 273,15)^2 \cdot \left(\frac{1}{T + 273,15} - \frac{1}{T_{\rm x} + 273,15} \right) \right]$$

 R_{T} Widerstandswert bei der Temperatur T

 R_{Tx} Widerstandswert am Beginn des betreffenden Temperaturintervalls

Temperatur in °C am Beginn des betreffenden Temperaturintervalls

T Interessierende Temperatur in °C ($T_X < T < T_{X+1}$)

 α_x Temperaturkoeffizient bei der Temperatur T_x

Abbildung 38: Zusammenhang zwischen Temperatur und Widerstand (EPCOS)

Der Zusammenhang zwischen Temperatur und Widerstandswert des NTC kann auch näherungsweise durch folgende Formel¹³ berechnet werden:

$$R_T = R_N \cdot e^{B \cdot \left(\frac{1}{T} - \frac{1}{T_N}\right)}$$

 R_N ... Widerstand bei der Bezugstemperatur (hier 10 K Ω),

T_N Bezugstemperatur (hier 25 °C)

 R_T Widerstandswert der aktuellen Temperatur, T aktuelle Temperatur, B Materialkonstante (Datenblatt)

2.14.2.2 Aufbau auf dem Protoboard

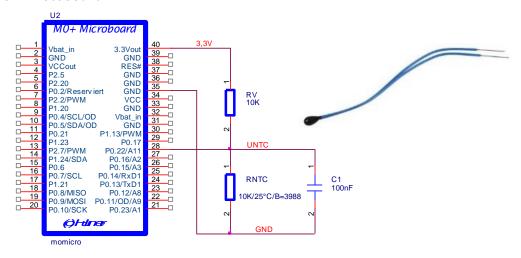


Abbildung 39: Schaltung für die Temperaturmessung mit einem NTC-Widerstand (Photo)

¹² NTC (Negative Temperaturkoeffizient)

¹³ Siemens Matsushita Components, Heißleiter - Datenbuch 1996

_			- 1010	2 22/2	_			- 4010	
Temperatur	$R_{25}=3k\Omega$	R ₂₅ =5k	$R_{25}=10k\Omega$		Temperatur	$R_{25}=3k\Omega$	R ₂₅ =5k	R ₂₅ =10kΩ	R ₂₅ =30kΩ
- 40,0	100950	168250	336500	907200	41	1535	2559	5117	15495
- 35,0	72777	121290	242600	663000	42	1475	2459	4917	14895
- 30,0	53100	88500	177000	489600	43	1418	2363	4726	14325
- 25,0	39111	65185	130400	365100	44	1363	2272	4543	13776
- 20,0	29121	48535	97070	274590	45	1311	2184	4369	13254
- 15,0	21879	36465	72930	208350	46	1261	2101	4202	12750
- 10,0	16599	27665	55330	159390	47	1213	2021	4042	12273
- 5,0	12695 9795	21158 16325	42320	122910	48 49	1167 1123	1945 1872	3889 3743	11811
0	9793	15514	32650 31030	954490 90870	50	1081	1802	3603	11373 10950
2	8849	14747	29490	86490	51	1041	1734	3469	10545
3	8414	14024	28050	82350	52	1002	1670	3340	10158
4	8004	13340	26680	78420	53	965	1609	3217	9786
5	7616	12694	25390	74730	54	930	1550	3099	9429
6	7250	12083	24170	71220	55	896	1493	2986	9090
7	6903	11505	23010	67890	56	863	1439	2878	8760
8	6575	10958	21920	64710	57	832	1387	2774	8448
9	6264	10440	20880	61740	58	802	1337	2675	8148
10	5970	9950	19900	58890	59	774	1290	2579	7857
11	5691	9485	18970	56190	60	746	1244	2488	7581
12	5426	9044	18090	53640	61	720	1200	2400	7314
13	5175	8626	17250	51210	62	695	1158	2316	7059
14	4938	8230	16460	48900	63	671	1118	2235	6818
15	4712	7854	15710	46710	64	647	1079	2158	6579
16	4499	7498	15000	44640	65	625	1042	2083	6354
17	4296	7160	14320	42660	66	603	1006	2011	6135
18	4103	6384	13680	40800	67	583	971	1943	5928
19	3921	6534	13070	39030	68	563	938	1877	5727
20	3747	6245	12490	37320	69	544	907	1813	5535
21	3582	5970	11940	35700	70	526	876	1752	5349
22	3425	5709	11420	34170	75	444	741	1481	4524
23	3276	5461	10920	32730	80	377	629	1258	3840
24	3135	5225	10450	31320	85	322	536	1072	3273
25	3000	5000	10000	30000	90	275	459	918	2799
26	2872	4786	9572	28737	95	237	394	789	2405
27	2750	4583	9165	27531	100	204	340	680	2073
28	2633	4389	8777	26385	105	177	294	589	1792
29	2523	4204	8408	25290	110	153	256	511	1555
30	2417	4029	8057	24249	115	134	223	445	1354
31	2317	3861	7722	23256	120	117	195	389	1182
32	2221	3701	7402	22305	125	103	171	342	1035
33	2129	3549	7098	21402	130	90	150	301	910
34	2042	3404	6808	20538	135	80	133	265	802
35	1959	3266	6531	19716	140	70	117	235	708
36	1880	3134	6267	18927	145	62	104	208	627
37	1805	3008	6016	18177	150	56	93	185	557
38	1733	2888	5775	17460	155	50	83	165	_
39	1664	2773	5546	16773					
40	1598	2664	5327	16119					

Tabelle 4: Widerstandswerte in Abhängigkeit von der Temperatur und NTC-Typ.

In diesem Beispiel wird ein NTC-Widerstand mit 10 K Ω bei 25 °C verwendet. Die Temperatur ist in °C angegeben.

2.14.2.3 Kennlinie

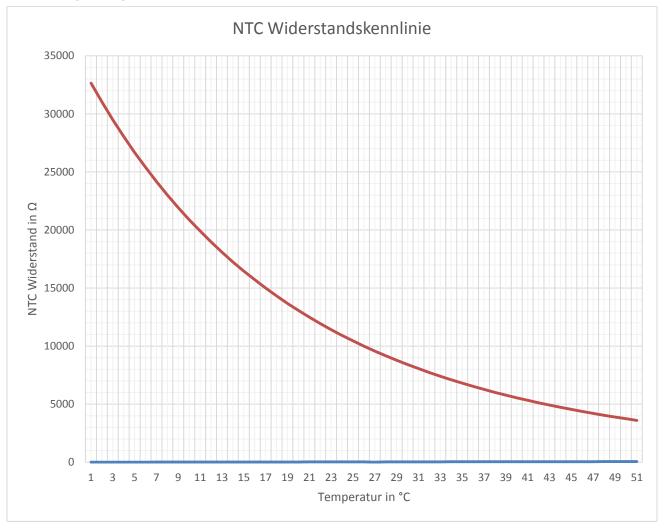


Abbildung 40: Kennlinie des verwendeten NTC-Widerstands

2.14.2.4 Berechnung

Aus der Abbildung 39 und der Spannungsteilerregel ergibt sich folgende Gleichung:

$$U_{NTC}=3.3[V] rac{R_{NTC}[\Omega]}{R_{NTC}+R_{V}[\Omega]}$$
 ... Spannungsteilerregel

Im Entwicklungssystem mbed wird das Ergebnis aus dem Analog-Digital-Umsetzers normiert. Der Wertebereich ist somit $0 \le ADU - Wert \le 1$, definiert als Float-Wert. Damit ist die Software leicht portierbar, der Wert ist unabhängig von der Versorgungsspannung und der Auflösung der Analog-Digital-Umsetzers.

$$\text{Daraus folgt: } U_{NTC} = 3.3 \lceil V \rceil \frac{R_{NTC} \lceil \Omega \rceil}{R_{NTC} + R_{V} \lceil \Omega \rceil} = 1 \lceil V \rceil \frac{R_{NTC} \lceil \Omega \rceil}{R_{NTC} + R_{V} \lceil \Omega \rceil} = > R_{NTC} \lceil \Omega \rceil = \frac{ADWert * R_{V}}{1 - ADWert}$$

Aus der Gleichung (Abbildung 38) $R_T = R_N \cdot e^{B\left(\frac{1}{T} - \frac{1}{T_N}\right)}$ wird durch Umformung:

 $B * \left(\frac{1}{T} - \frac{1}{T_N}\right) = \ln \left(\frac{R_T}{R_N}\right)$ und daraus die gesuchte Temperatur:

$$T[K] = \frac{1}{\frac{ln\left(\frac{R_T[\Omega]}{R_N[\Omega]}\right)}{B} + \frac{1}{T_N[K]}}$$

Hinweis: Im obigen Diagramm ist nur ein Teilbereich des möglichen Temperaturmessbereiches dargestellt. Der vollständige Messbereich dieses NTC-Widerstandes ist von -55 °C bis +155 °C. Der nichtlineare Zusammenhang zwischen Temperatur und Widerstand ist aus der Kennlinie ersichtlich.

Der Kondensator C1 (100 nF, Keramik) ist in Verbindung mit dem ADC-Eingang des Microcontrollers (Sample&Hold) sehr wichtig. Die Spannung wird im Pulsbetrieb gemessen

2.14.3 Beispiel NTC

2.14.3.1 Allgemeines

In diesem Beispiel wird ein NTC der Firma EPCOS S863 14 mit 10 K Ω / 25 °C verwendet.

Der B-Wert beträgt 3988 (berechnet aus den Punkten 25 und 100 °C). Um das Beispiel einfach zu halten, werden keine Filter (Mittelwertbildungen) implementiert.

2.14.3.2 Programm

```
/* **** BULME GRAZ, Temperaturmessung mit NTC Widerstand ********* */
/* **** Abteilung Elektronik und Technische Informatik / Humer ****** */
#include "mbed.h"
                            // Einbindung der mbed Library
DigitalOut sconhi(PO_2); // PO.2=Ausgang (Umschalter für USB-UART)
Serial pc(PO_19, PO_18); // TxD, RxD Definition der Portleitung
AnalogIn NTC(P0 22);
/* ********** Variablendefinition ****************** */
int RV = 10000;
                             // Vorwiderstand in Ohm
int BWert = 3988;
                             // BWert NTC - Widerstand
                             // Momentaner Widerstand NTC
float rntc;
                             // Analogwert von UNTC, 0<=adcntc<=1</pre>
float adente;
                             // Temperatur in Grad Celsius
float temp;
/* ********** Hauptprogramm ************ */
int main()
                           // Hauptprogramm
                         // Datenübertragungsgeschw. 9600 Bit/sec
   pc.baud(9600);
                         // UART an USB verbinden
   sconhi=1;
                          // Warte 5 Sekunden
   wait(5);
                          // Endlosschleife Beginn
   while(1)
    adcntc=NTC.read(); // Wert aus dem ADC 0<=adcntc<=1, float</pre>
    rntc=((adcntc*RV)/(1.0-adcntc)); //Widerstand RNTC=?
    temp=(1/((log(rntc/RV)/(BWert)+(1/298.15f)))-273.15f); // Temperatur=?
    wait (0.3);
    pc.printf("NTC: %1.3f[V] %5.0f[Ohm] %3.1f[C]\n\r",3.3*adcntc,rntc,temp);
                     // end while
   // end main
}
```

¹⁴ RS Best.-Nr.706-2759, Herstellerteilenummer: B57861S0103F045, EPCOS

2.14.3.3 Visualisierung

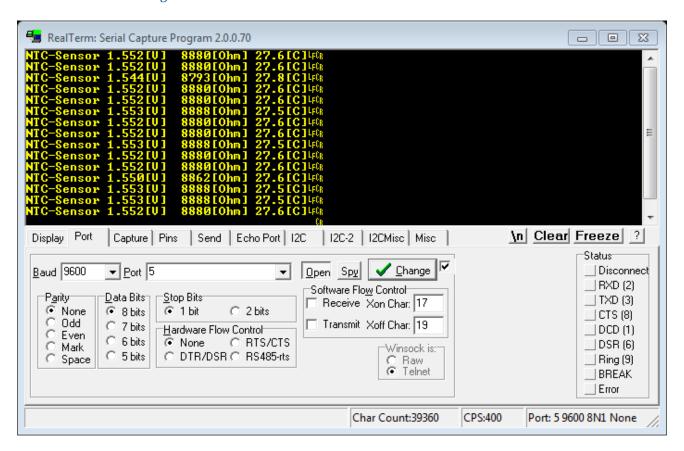


Abbildung 41: Ausgabe der Sensordaten am Bildschirm mit dem Terminalprogramm RealTerm

2.14.4 Vergleich NTC vs LM235

2.14.4.1 Allgemeines

In diesem Beispiel werden die 2 Temperatursensoren (NTC und LM235) gleichzeitig gemessen und bei der Datenausgabe gegenübergestellt. Der NTC ist am Port P0.22 und der LM235 am Port P0.16 angeschlossen. Die Messergebnisse werden nicht gefiltert sondern direkt ausgegeben.

2.14.4.2 Programm

```
/* **** Abteilung Elektronik und Technische Informatik / Humer ****** */
                                                                   // Einbindung der mbed Library
#include "mbed.h"
DigitalOut sconhi(PO_2); // PO.2=Ausgang (Umschalter für USB-UART)
Serial pc(PO_19, PO_18); // TxD, RxD Definition der Portleitung
AnalogIn NTC(PO_22); // NTC-Widerstand (als Temperatursensor)
AnalogIn templm235(P0_16); // Temperatursensor LM235
                                                void init mcboard();
int RV = 10000;
int BWert = 3988;
float rntc;
float adentc;
float temp;
// Temperatur in Cond Cond
// Temperatur in Cond Con
 /* ********** Variablendefinition ****************** */
                                                                    // BWert NTC - Widerstand
                                                                    // Momentaner Widerstand NTC
                                                                     // Analogwert von UNTC, 0<=adcntc<=1</pre>
                                                                     // Temperatur in Grad Celsius
/* ********** Hauptprogramm ************ */
int main() // Hauptprogramm
        init_mcboard();
                                                            // Endlosschleife Beginn
         while(1)
          adcntc=NTC.read(); // Wert aus dem ADC 0<=adcntc<=1, float</pre>
           rntc=((adcntc*RV)/(1.0-adcntc)); //Widerstand RNTC=?
           temp=(1/((log(rntc/RV)/(BWert)+(1/298.15f)))-273.15f); // Temperatur=?
           wait (0.3);
           pc.printf("***** Temperaturmessung *****\n"); //Ausgabe
          pc.printf("NTC: %1.3f[V] %5.0f[Ohm] %3.1f[C]\n\r",3.3*adcntc,rntc,temp);
          pc.printf("Temp:= %3.1f Grad Celsius\n\r",330*templm235.read()-273.15);
                                                 // end while
        // end main
}
 /* ************* Funktionen
                                                                                         *********************
void init mcboard()
 {
                                                        // Datenübertragungsgeschw. 9600 Bit/sec
        pc.baud(9600);
        sconhi=1;
                                                           // UART an USB verbinden
                                                           // Warte 5 Sekunden
        wait(5);
}
```

2.14.4.3 Ausgabe

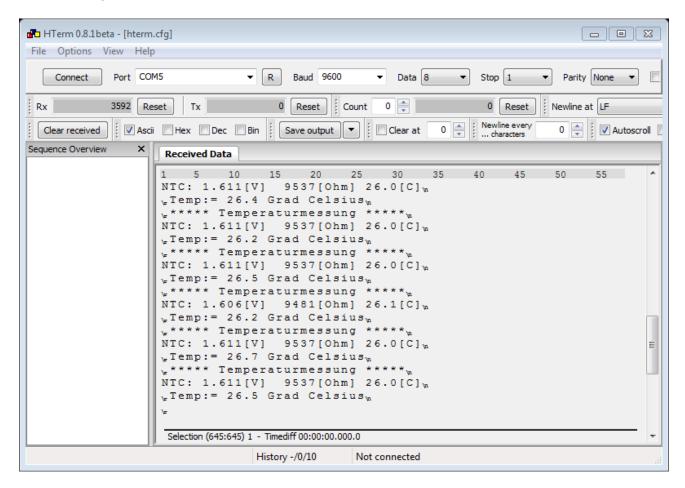


Abbildung 42: Ausgabe Temperaturdaten NTC versus LM235

2.15 RTC

2.15.1 Allgemeines

Die RTC¹⁵ ist in dieser Microcontrollerreihe bereits integriert und braucht als externe Beschaltung nur mehr einen Uhrenquarz mit den notwendigen 2 Kondensatoren. Als Basis dient der "UNIX Timestamp". Die Versorgung der RTC ist über VB verknüpft (Akku, ohne Bestückung mit ca.3,5 V). Entsprechende Bibliotheksfunktionen sind in der mbed Library bereits integriert.

2.15.2 Datum und Uhrzeit

```
/* **** Abteilung Elektronik und Technische Informatik / Humer ****** */
#include "mbed.h"
/* *********** Definitionen
                           ********** */
Serial pc(P0 19, P0 18);
                     // TxD, RxD Definition der Portleitung
               /* ********
void init mcboard();
/* ********
               Variablendeklarationen
/* ********
               Hauptprogramm
                            **********************
int main()
  init mcboard();
  set time (1507852800); // Set RTC time to 13 Oct 2017 00:00:00
  while (1)
     time_t seconds = time(NULL); // Zuweisung Struktur seconds
     pc.printf("Zeit seit 1.1.1970 = %d sec\n\r", seconds); //Ausgabe
                  // Ausgabe als normierter Zeichenkette
     pc.printf("Date&Time: %s \n\r",ctime(&seconds));
     wait(1);
                  // Warte 1 Sekunde
  }
}
/* *********
                            *********************
               Funktionen
void init mcboard()
                  // Datenübertragungsgeschw. 9600 Bit/sec
  pc.baud(9600);
                  // UART an USB verbinden
  sconhi=1;
                   // Warte 5 Sekunden
  wait(5);
}
```

¹⁵ Real Time Clock

2.15.3 Ausgabe

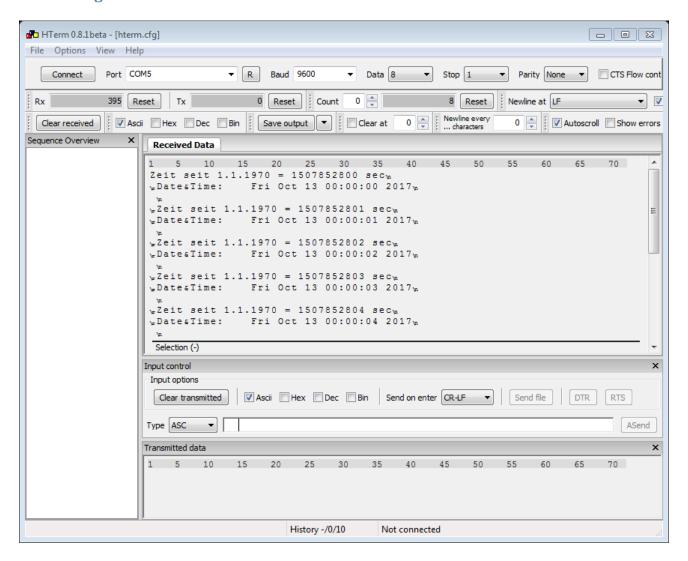


Abbildung 43: Ausgabe von Datum und Uhrzeit

2.15.4 Datum und Uhrzeit stellen

2.15.4.1 Allgemeines

Nachfolgendes Programm stellt eine Erweiterung zum Vorhergehenden dar. Der Quellcode wurde um eine Funktion für die Eingabe von Datum und Uhrzeit erweitert.

```
/* **** Abteilung Elektronik und Technische Informatik / Humer ****** */
#include "mbed.h"
                           ********* */
/* *********
              Definitionen
DigitalOut sconhi(PO_2); // PO.2=Ausgang (Umschalter für USB-UART)
Serial pc(PO_19, PO_18); // TxD, RxD Definition der Portleitung
              /* ********
void init mcboard();
void zeitstellen(void);
/* *******
               struct tm t;
int main()
{
  init mcboard();
  zeitstellen();  // Einstellung Datum und Uhrzeit
  while (1)
  {    time t seconds = time(NULL); // Zuweisung Struktur seconds
     pc.printf("Zeit seit 1.1.1970 = %d sec\n\r", seconds); //Ausgabe
                   // Ausgabe normierter Zeichenkette
     pc.printf("Date&Time: %s \n\r",ctime(&seconds));
     wait(1);
                 // Warte 1 Sekunde
  }
              void init mcboard()
  sconhi=1;
                  // UART an USB verbinden
                  // Warte 5 Sekunden
  wait(5);
}
void zeitstellen(void)
  // get the current time from the terminal
  pc.printf("Geben Sie das aktuelle Datum und Uhrzeit ein:\n");
  pc.printf("YYYYY MM DD HH MM SS[enter]\n");
  pc.scanf("%d %d %d %d %d %d %d", &t.tm year, &t.tm mon, &t.tm mday, &t.tm hour,
&t.tm min, &t.tm sec);
                   // adjust for tm structure required values
  t.tm_year = t.tm_year - 1900;
  t.tm mon = t.tm mon - 1;
  set time(mktime(&t)); // Setzen von Datum und Uhrzeit
```

2.15.4.2 Ausgabe

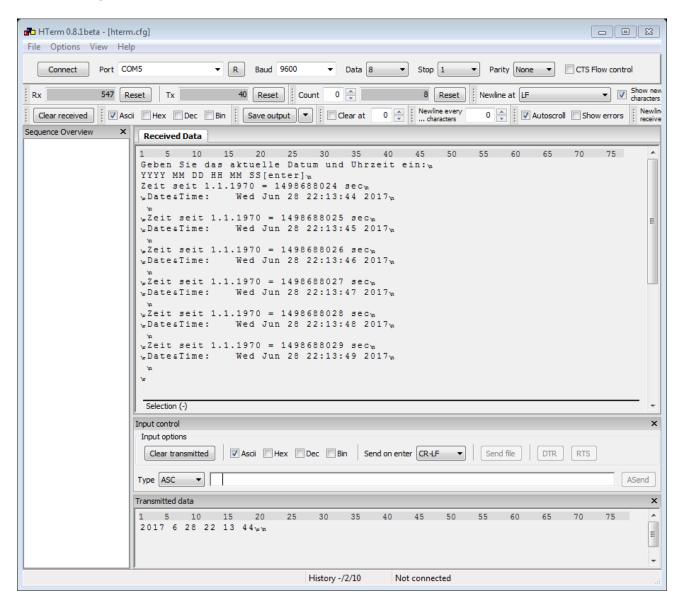


Abbildung 44: Normierte Ausgabe nach einer individuellen Datum und Uhrzeit Eingabe

2.15.5 Individuelle Zeit und Datum Ein-Ausgabe

```
/* **** Abteilung Elektronik und Technische Informatik / Humer ****** */
#include "mbed.h"
DigitalOut sconhi(PO_2); // PO.2=Ausgang (Umschalter für USB-UART)
Serial pc(PO_19, PO_18); // TxD, RxD Definition der Portleitung
               /* ********
void init mcboard();
void zeitstellen(void);
void zeit ausgabe individuell(void);
struct tm t;
int main()
  // Einstellung Datum und Uhrzeit
  while (1)
  {
     time_t seconds = time(NULL); // Zuweisung Struktur seconds
     pc.printf("Zeit seit 1.1.1970 = %d sec\n\r", seconds); //Ausgabe
                   // Ausgabe normierter Zeichenkette
     pc.printf("Date&Time: %s \n\r",ctime(&seconds));
     zeit ausgabe individuell();
              // Warte 1 Sekunde
     wait(1);
  }
/* ************* Funktionen
                             ***********
void init mcboard()
                   // Datenübertragungsgeschw. 9600 Bit/sec
  pc.baud(9600);
                   // UART an USB verbinden
  sconhi=1;
                   // Warte 5 Sekunden
  wait(5);
}
void zeitstellen(void)
  // get the current time from the terminal
  pc.printf("Geben Sie das aktuelle Datum und Uhrzeit ein:\n");
  pc.printf("YYYYY MM DD HH MM SS[enter]\n");
  pc.scanf("%d %d %d %d %d %d %d", &t.tm year, &t.tm mon, &t.tm mday, &t.tm hour,
&t.tm min, &t.tm_sec);
                    // adjust for tm structure required values
  t.tm year = t.tm year - 1900;
  t.tm mon = t.tm mon - 1;
  set time(mktime(&t)); // Setzen von Datum und Uhrzeit
}
void zeit_ausgabe_individuell(void)
  pc.printf(" Jahr:= %d \n", t.tm year+1900);
  pc.printf(" Monat:= %d \n", t.tm_mon+1);
  pc.printf(" Tag:= %d \n", t.tm mday);
  pc.printf(" Zeit:= %2d:%2d:%2d \n", t.tm_hour,t.tm_min,t.tm_sec);
}
```

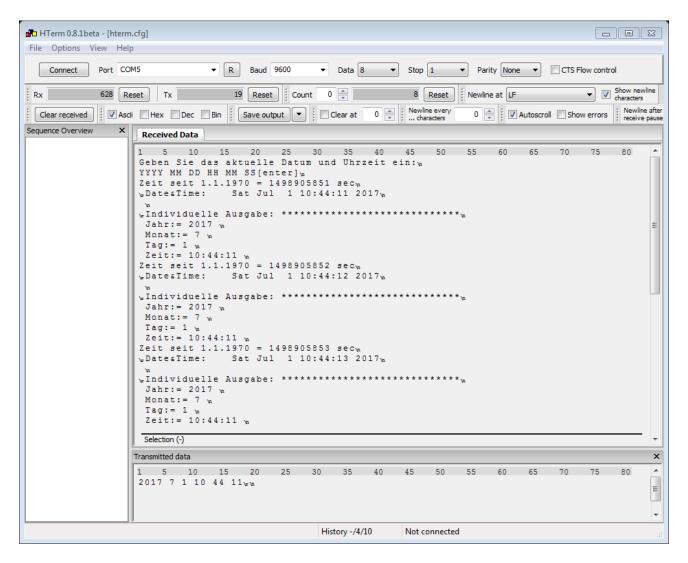


Abbildung 45: Anzeige nach der individuellen Ein- und Ausgabe

2.16 Timer

2.16.1 Allgemeines

In der mbed-Bibliothek sind zahlreiche Timer-Funktionen integriert. Es können mehrere Timer verwendet werden. Die Definition erfolgt mit:

Timer < name >

Ähnlich einer Stoppuhr können folgende Funktionen verwendet werden:

Befehl	Beschreibung
<name>.start()</name>	Starte Timer <name></name>
<name>.reset()</name>	Reset Timer <name> auf 0</name>
<name>.stop()</name>	Stoppe Timer <name></name>
<name>.read_us()</name>	Lese die Zeit von Timer in Mikrosekunden
<name>.read_ms()</name>	Lese die Zeit von Timer in Millisekunden
<name>.read_s()</name>	Lese die Zeit von Timer in Sekunden

Tabelle 5: Befehle der mbed-Bibliothek "Timer"

2.16.2 Messung der Dauer einer UART Ausgabe

2.16.2.1 Programm

In diesem Beispiel wird die Dauer der Ausgabe "Hello World" in Millisekunden gemessen.

```
/* ****** BULME GRAZ, Zeitmessung einer Ausgabe ******** */
/* ***** Abteilung Elektronik und Technische Informatik / Humer ******* */
#include "mbed.h"
                /* ********
DigitalOut sconhi(P0_2); // P0.2=Ausgang (Umschalter für USB-UART) Serial pc(P0_19, P0_18); // TxD, RxD Definition der Portleitung
Timer minki;
/* ********
                               ********************
                 Funktionen
void init mcboard();
                 /* ********
/* ******
                               ********************
                Hauptprogramm
int main()
  init_mcboard();
minki.reset();
                    // Initialisierung Microboard
                    // Timer rücksetzen
                     // Timer start
  minki.start();
  pc.printf("Hello World\n\r");
  minki.stop();
  pc.printf(" Die Ausgabezeitdauer betrug: %d ms\n\r",minki.read ms());
  while(1);
}
/* ********
               Funktionen
                               ********* */
void init_mcboard()
                   // Datenübertragungsgeschw. 9600 Bit/sec
  pc.baud(9600);
                    // UART an USB verbinden
  sconhi=1;
  wait(5);
                    // Warte 5 Sekunden
}
```

Bei der Baudrate von 9600 bit/Sekunde ist die Dauer der Ausgabe 11 ms. Bei einer entsprechend höheren Baudrate verkürzt sich die Ausgabezeit.

2.16.2.2 Ausgabe

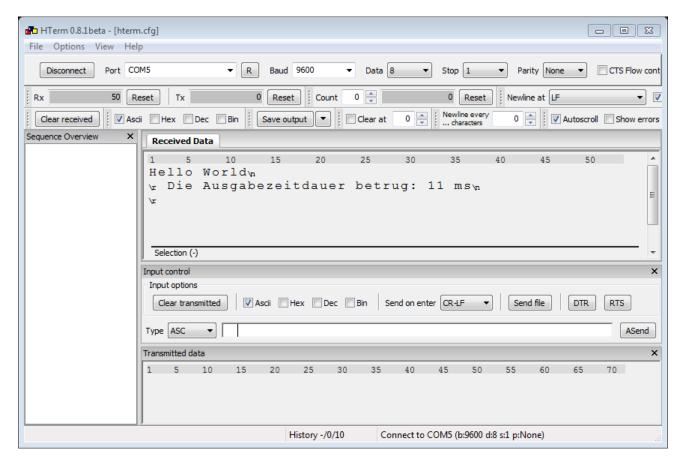


Abbildung 46: Anzeige der Zeitdauer für die Ausgabe

2.16.3 Messung einer PWM Spannung

2.16.3.1 Signalgenerierung

In diesem Beispiel wird eine PWM Spannung mit einer Frequenz von 100 Hz und einem dc von 33 % gemessen. Die Periode ist dabei entsprechend der 100 Hz, 10 ms. Die zu messende Spannung wird in einem Funktionsgenerator eingestellt.

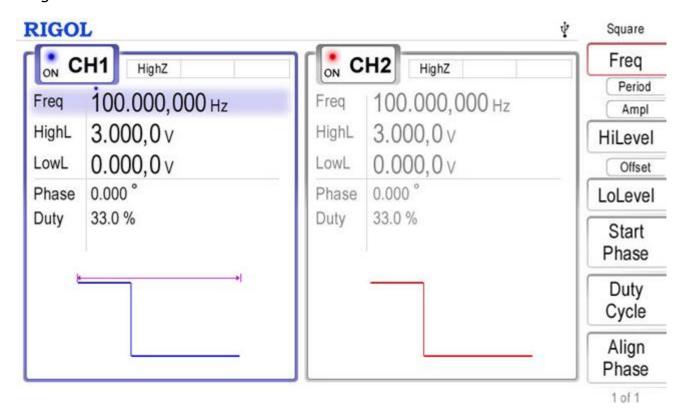


Abbildung 47: Signalgenerierung des gewünschten PWM-Signals am Funktionsgenerator

Die Rechteckspannung hat dabei folgende Eckdaten:

- a) High-Level = 3 V
- b) Periode = 10 ms
- c) Frequenz = 100 Hz
- d) Hightime = $dc^{16} = 33 \%$

1

 $^{^{16}}$ dc = duty cycle

2.16.3.2 Kontrolle des Eingangssignals RIGOL T'D H 1.00ms 500MSa/s 6.00M pts

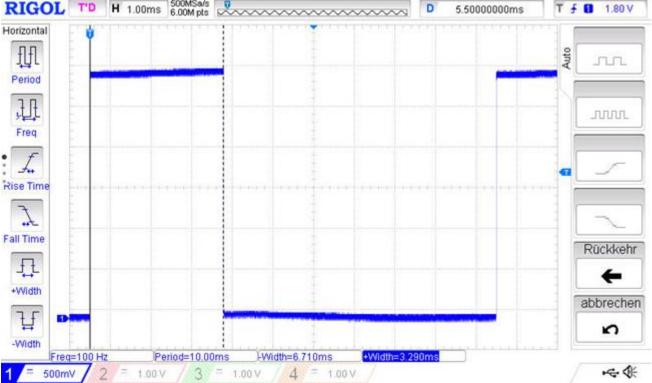


Abbildung 48: Messung des PWM Signals mit dem Oszilloskop

Das PWM-Signal wird mit dem Port P1.13 (Pin-Nummer 30 de Microboards) verbunden und als Interrupt-Eingang definiert. Im nachfolgenden Beispiel wird die Periode und die High-Time in Microsekunden gemessen und die gemessenen Werte über UART an den PC geschickt. Die Baudrate wird auf 115200 baud erhöht.

```
2.16.3.3 Programm
/* ******* BULME GRAZ, Messung einer PWM Eingangsgrösse ******** */
/* **** Abteilung Elektronik und Technische Informatik / Humer ****** */
#include "mbed.h"
DigitalOut sconhi(P0_2); // P0.2=Ausgang (Umschalter für USB-UART)
Serial pc(P0_19, P0_18); // TxD, RxD Definition der Portleitung
InterruptIn tom(P1_13); // PWM-Eingangssignal als Interrupt
Timer minki; // Timerfunktion mbed-Library
// Initialisierung des Microboards
void init mcboard();
/* ********
                                      Variablendeklarationen
              // Variable für die hightime
long hightime;
                         // Variable für die Periode des Eingangssignals
long period;
long counter, counter old;  // Zwischenvariablen
void trigger()
{
   while(tom==1);
                            // Warte hightime ab
   hightime=minki.read_us()-counter; // Ermittlung der hightime counter_old=counter; // Speichern des Zählerstandes für nächste
                             // Messung
   printf("PWM, periode=%d us, ontime=%d us\n\r",period,hightime); // Ausgabe
}
/* ************ Hauptprogramm
                                 ********* */
main()
{
   while(1);
1
/* ************ Funktionen
                                 **********************
void init mcboard()
   pc.baud(115200);
                       // Datenübertragungsgeschw. 9600 Bit/sec
   sconhi=1;
                      // UART an USB verbinden
                     // Warte 5 Sekunden
   wait(5);
  minki.reset(); // Timer rücksetzen minki.start(); // Timer start tom.rise(&trigger); // Interrupt steiger
                     // Interrupt steigende Flanke
}
```

2.16.3.4 Anzeige der Messdaten

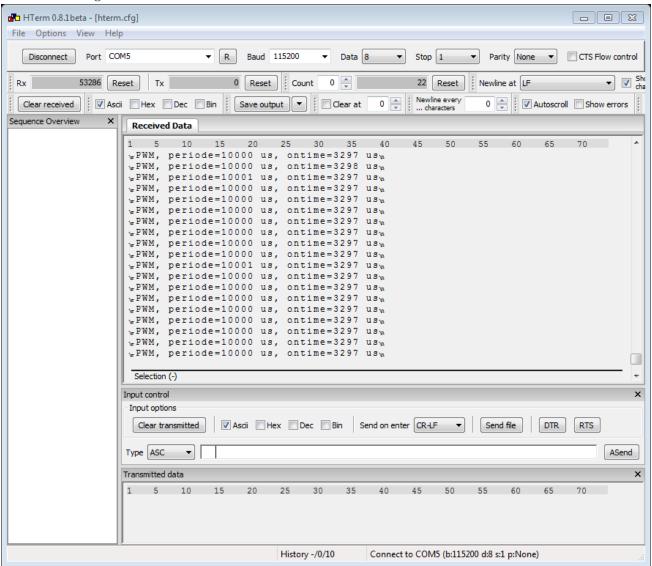


Abbildung 49: Anzeige der PWM Messung 100 Hz / dc=33 %

3 Anhang

3.1 Abbildungsverzeichnis

Abbildung 1: Oberseite des Microboards © Foto Schonauer (SHO)	4
Abbildung 2: Unterseite des Microboards © Foto Schönauer (SHO)	4
Abbildung 3: Anschlussbelegung des Microboards	5
Abbildung 4: Der Microcontroller LPC11U68-48PIN mit Anschlussdefinitionen	6
Abbildung 5: Microcontroller LPC11U68 - LQFP48 pinning	7
Abbildung 6: Taktversorgung für den Microcontroller und der Echtzeituhr (RTC	2)8
Abbildung 7: Pin-Belegung des USB-Mini Anschlusses	8
Abbildung 8: USB-UART-Controller der Firma FTDI	9
Abbildung 9: Umschaltung UART-USB durch den PortPin P0.2	9
Abbildung 10: Schaltung für RESET und BOOT (für Programmdownload)	10
Abbildung 11: Tastenfunktion für RESET und BOOT (für Programmdownload)	10
Abbildung 12:Schaltung für den 3,3 V Regler	
Abbildung 13: Schaltung für das Lademanagement einer LIPO-Zelle	11
Abbildung 14: Anschlussbelegung des DIL40 – Connectors	
Abbildung 15: Bestückungsplan oben und unten (nicht maßstsgetreu)	13
Abbildung 16: Darstellung des Layouts oben und unten, ohne Masseflächen	
(nicht maßstäblich)	14
Abbildung 17: Schaltplan für den Aufbau auf einem Protoboard, R1 und D1	
werden laut Schaltplan verdrahtet	
Abbildung 18: Darstellung des Ausgangssignals P2.2 an einem Oszilloskop	
Abbildung 19: Aufbau eines 4 Bit Lauflichtes am Protoboard	
Abbildung 20: Aufbau eines 4 Bit Zählers am Protoboard	
Abbildung 21: Aufbau der Schaltung am Protoboard	
Abbildung 22: Ausgangspegel (4 Bit) im 200ms Zeitraster:	
Abbildung 23: Aufbau am Protoboard, Blinklicht 1 Hz	
Abbildung 24: Visualisierung am PC mit Hilfe der Software HTerm	
Abbildung 25: Visualisierung am PC mit HTerm	
Abbildung 26: Visualisierung Ein/Ausgabe am PC	
Abbildung 27: Visualisierung der Eingabe "Maus" und deren Codes am PC	
Abbildung 28: Schaltung für den elektronischen Würfel	31
Abbildung 29: Anzeige der Würfelergebnisse am Bildschirm mit einem	_
Terminalprogramm	
Abbildung 30: 3 Portleitungen für die interne PWM Einheiten	35

Abbildung 31: Visualisierung der Signalform am Ausgang eines Oszilloskops	
Abbildung 32: Die Darstellung der 2 PWM Signale am Oszilloskop	
Abbildung 33: Pin-Belegung Microboard	
Abbildung 34: Versuchsaufbau für eine Spannungsmessung	
Abbildung 35: Ergebnis der Spannungsmessung am Potentiometer	
Abbildung 36: Aufbau der Schaltung mit dem IC LM235 auf dem Protoboard	
Abbildung 37: Ausgabe der Temperaturmessung	
Abbildung 38: Zusammenhang zwischen Temperatur und Widerstand (EPCOS	
Abbildus 20. Cabaltus of Curdia Tananayatuwa agama wait air an NTC	. 45
Abbildung 39: Schaltung für die Temperaturmessung mit einem NTC-	4 -
Widerstand (Photo)	
Abbildung 40: Kennlinie des verwendeten NTC-Widerstands	. 4/
Abbildung 41: Ausgabe der Sensordaten am Bildschirm mit dem	
Terminalprogramm RealTerm	
Abbildung 42: Ausgabe Temperaturdaten NTC versus LM235	
Abbildung 43: Ausgabe von Datum und Uhrzeit	
Abbildung 44: Normierte Ausgabe nach einer individuellen Datum und Uhrzeit	
Eingabe	
Abbildung 45: Anzeige nach der individuellen Ein- und Ausgabe	
Abbildung 46: Anzeige der Zeitdauer für die Ausgabe	61
Abbildung 47: Signalgenerierung des gewünschten PWM-Signals am	
Funktionsgenerator	
Abbildung 48: Messung des PWM Signals mit dem Oszilloskop	
Abbildung 49: Anzeige der PWM Messung 100 Hz / dc=33 %	65
3.2 Tabellenverzeichnis	
Tabelle 1: Lieferbare Typen des Microcontrollers	7
Tabelle 2: Stückliste, RS-Nr. bedeutet Bestell-Nr. der Firma RS-Components	
(BBG Lieferant)	
Tabelle 3: Ausgabe für das entsprechende Würfelergebnis	. 32
Tabelle 4: Widerstandswerte in Abhängigkeit von der Temperatur und NTC-Ty	yp.
Tabelle 5: Befehle der mbed-Bibliothek "Timer"	. 59

3.3 Literaturverzeichnis

3.3.1 Internetquellen

a) Entwicklungsseite: www.mbed.org

b) Handbook: https://developer.mbed.org\handbook

c) Microcontroller: www.nxp.com

d) Datenblatt: http://cache.nxp.com/documents/data-sheet/LPC11U6X.pdf

3.3.2 Bücher

- a) Embedded systems, Bert van Dam, ARM Mikrocontroller, elektor-Verlag, Band 1, 35 Einsteiger-Projekte in C mit dem mbed Board LPC1768 von NXP, ISBN 987-3-89576-262-8, 2012
- b) Embedded systems, Bert van Dam, ARM Mikrocontroller, elektor-Verlag, Band 2, 30 Projekte in C für Fortgeschrittene mit dem mbed Board LPC1768 von NXP,ISBN 987-3-89576-271-0, 2013